Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland.
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
Mol Cancer Ther. 2021 Jun;20(6):1199-1209. doi: 10.1158/1535-7163.MCT-20-0603. Epub 2021 Mar 15.
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. MYC-driven MBs, commonly found in the group 3 MB, are aggressive and metastatic with the worst prognosis. Modeling MYC-driven MB is the foundation of therapeutic development. Here, we applied a synthetic mRNA-driven strategy to generate neuronal precursors from human-induced pluripotent stem cells (iPSCs). These neuronal precursors were transformed by the oncogene combined with loss of function to establish an MYC-driven MB model recapitulating the histologic and transcriptomic hallmarks of group 3 MB. We further show that the marine compound Frondoside A (FA) effectively inhibits this MYC-driven MB model without affecting isogenic neuronal precursors with undetectable MYC expression. Consistent results from a panel of MB models support that MYC levels are positively correlated with FA's antitumor potency. Next, we show that FA suppresses MYC expression and its downstream gene targets in MB cells, suggesting a potential mechanism underlying FA's inhibitory effects on MYC-driven cancers. In orthotopic xenografts of MYC-driven MB, intratumoral FA administration potently induces cytotoxicity in tumor xenografts, significantly extends the survival of tumor-bearing animals, and enhances the recruitment of microglia/macrophages and cytotoxic T lymphocytes to tumors. Moreover, we show that MYC levels also predict FA potency in glioblastoma and non-small cell lung cancer cells. Taken together, this study provides an efficient human iPSC-based strategy for personalizable cancer modeling, widely applicable to mechanistic studies (e.g., genetic predisposition to cancer) and drug discovery. Our preclinical results justify the clinical translation of FA in treating MYC-driven MB and other human cancers.
髓母细胞瘤(MB)是最常见的小儿脑恶性肿瘤。常见于 3 组的 MYC 驱动的 MB 具有侵袭性和转移性,预后最差。建立 MYC 驱动的 MB 模型是治疗开发的基础。在这里,我们应用合成 mRNA 驱动策略从人诱导多能干细胞(iPSC)中产生神经元前体。这些神经元前体通过癌基因与功能丧失相结合转化,建立了重现 3 组 MB 的组织学和转录组学特征的 MYC 驱动的 MB 模型。我们进一步表明,海洋化合物 Frondoside A(FA)有效地抑制了这种 MYC 驱动的 MB 模型,而不会影响具有不可检测的 MYC 表达的同基因神经元前体。来自一系列 MB 模型的一致结果支持 MYC 水平与 FA 的抗肿瘤效力呈正相关。接下来,我们表明 FA 抑制 MB 细胞中的 MYC 表达及其下游基因靶标,这表明 FA 抑制 MYC 驱动的癌症的潜在机制。在 MYC 驱动的 MB 的原位异种移植中,肿瘤内 FA 给药强烈诱导肿瘤异种移植物中的细胞毒性,显著延长荷瘤动物的存活时间,并增强小胶质细胞/巨噬细胞和细胞毒性 T 淋巴细胞向肿瘤的募集。此外,我们表明 MYC 水平也预测了 FA 在胶质母细胞瘤和非小细胞肺癌细胞中的效力。总之,这项研究提供了一种有效的基于人 iPSC 的个性化癌症建模策略,广泛适用于机制研究(例如癌症的遗传易感性)和药物发现。我们的临床前结果证明了 FA 在治疗 MYC 驱动的 MB 和其他人类癌症中的临床转化。