Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
Amsterdam Neuroscience, Complex Trait Genetics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
Genome Res. 2021 Apr;31(4):551-563. doi: 10.1101/gr.265348.120. Epub 2021 Mar 15.
Transposable element (TE) invasions have shaped vertebrate genomes over the course of evolution. They have contributed an extra layer of species-specific gene regulation by providing novel transcription factor binding sites. In humans, SINE-VNTR- (SVA) elements are one of three still active TE families; approximately 2800 SVA insertions exist in the human genome, half of which are human-specific. TEs are often silenced by KRAB zinc finger (KZNF) proteins recruiting corepressor proteins that establish a repressive chromatin state. A number of KZNFs have been reported to bind SVAs, but their individual contribution to repressing SVAs and their roles in suppressing SVA-mediated gene-regulatory effects remains elusive. We analyzed the genome-wide binding profile for ZNF91 in human cells and found that ZNF91 interacts with the VNTR region of SVAs. Through CRISPR-Cas9-mediated deletion of in human embryonic stem cells, we established that loss of results in increased transcriptional activity of SVAs. In contrast, SVA activation was not observed upon genetic deletion of the gene encoding another strong SVA interactor. Epigenetic profiling confirmed the loss of SVA repression in the absence of and revealed that mainly evolutionary young SVAs gain gene activation-associated epigenetic modifications. Genes close to activated SVAs showed a mild up-regulation, indicating SVAs adopt properties of -regulatory elements in the absence of repression. Notably, genome-wide derepression of SVAs elicited the communal up-regulation of KZNFs that reside in KZNF clusters. This phenomenon may provide new insights into the potential mechanisms used by the host genome to sense and counteract TE invasions.
转座元件 (TE) 的入侵在进化过程中塑造了脊椎动物的基因组。它们通过提供新的转录因子结合位点,为物种特异性基因调控增添了额外的层次。在人类中,SINE-VNTR- (SVA) 元件是三种仍活跃的 TE 家族之一;人类基因组中大约有 2800 个 SVA 插入,其中一半是人类特有的。TE 通常通过 KRAB 锌指 (KZNF) 蛋白沉默,这些蛋白招募核心抑制蛋白,从而建立抑制性染色质状态。已经报道了许多 KZNF 结合 SVA,但它们对抑制 SVA 的个体贡献以及它们在抑制 SVA 介导的基因调控效应方面的作用仍不清楚。我们分析了人类细胞中 ZNF91 的全基因组结合谱,发现 ZNF91 与 SVA 的 VNTR 区域相互作用。通过 CRISPR-Cas9 介导的人类胚胎干细胞中缺失,我们确定缺失导致 SVA 的转录活性增加。相比之下,在编码另一个强 SVA 相互作用子的基因中遗传缺失时,并未观察到 SVA 的激活。表观遗传分析证实,在缺乏的情况下,SVA 被抑制,并且主要是进化年轻的 SVA 获得与基因激活相关的表观遗传修饰。靠近激活 SVA 的基因显示出轻微的上调,表明 SVA 在没有抑制的情况下具有 -调节元件的特性。值得注意的是,SVAs 的全基因组去抑制引发了位于 KZNF 簇中的 KZNFs 的共同上调。这种现象可能为宿主基因组用于感知和对抗 TE 入侵的潜在机制提供新的见解。