Bok Jinsol, Lee Si Young, Lee Byoung-Hoon, Kim Cheonghee, Nguyen Dang Le Tri, Kim Ji Won, Jung Euiyeon, Lee Chan Woo, Jung Yoon, Lee Hyeon Seok, Kim Jiheon, Lee Kangjae, Ko Wonjae, Kim Young Seong, Cho Sung-Pyo, Yoo Jong Suk, Hyeon Taeghwan, Hwang Yun Jeong
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
J Am Chem Soc. 2021 Apr 14;143(14):5386-5395. doi: 10.1021/jacs.0c12696. Epub 2021 Mar 16.
Pd is one of the most effective catalysts for the electrochemical reduction of CO to formate, a valuable liquid product, at low overpotential. However, the intrinsically high CO affinity of Pd makes the surface vulnerable to CO poisoning, resulting in rapid catalyst deactivation during CO electroreduction. Herein, we utilize the interaction between metals and metal-organic frameworks to synthesize atomically dispersed Au on tensile-strained Pd nanoparticles showing significantly improved formate production activity, selectivity, and stability with high CO tolerance. We found that the tensile strain stabilizes all reaction intermediates on the Pd surface, whereas the atomically dispersed Au selectively destabilizes CO* without affecting other adsorbates. As a result, the conventional COOH* versus CO* scaling relation is broken, and our catalyst exhibits 26- and 31-fold enhancement in partial current density and mass activity toward electrocatalytic formate production with over 99% faradaic efficiency, compared to Pd/C at -0.25 V versus RHE.
钯是在低过电位下将一氧化碳电化学还原为甲酸盐(一种有价值的液体产物)最有效的催化剂之一。然而,钯固有的高一氧化碳亲和力使表面易受一氧化碳中毒影响,导致在一氧化碳电还原过程中催化剂迅速失活。在此,我们利用金属与金属有机框架之间的相互作用,在拉伸应变的钯纳米颗粒上合成原子分散的金,其显示出显著提高的甲酸盐生产活性、选择性和稳定性以及高一氧化碳耐受性。我们发现,拉伸应变使钯表面上的所有反应中间体稳定,而原子分散的金选择性地使一氧化碳不稳定,同时不影响其他吸附质。结果,传统的羧基与一氧化碳*标度关系被打破,与相对于可逆氢电极在-0.25V时的钯/碳相比,我们的催化剂在电催化甲酸盐生产的分电流密度和质量活性方面提高了26倍和31倍,法拉第效率超过99%。