Suppr超能文献

用于数据中心光通信的采用不均匀分段映射的概率整形和前向纠错方案。

Probabilistic shaping and forward error correction scheme employing uneven segmentation mapping for data center optical communication.

作者信息

Jing Zexuan, Tian Qinghua, Xin Xiangjun, Wang Yongjun, Wang Xishuo, Gao Ran, Guo Dong, Wang Fu, Tian Feng, Zhang Qi

出版信息

Opt Express. 2021 Feb 15;29(4):6209-6219. doi: 10.1364/OE.416175.

Abstract

The combination of probabilistic shaping (PS) technology and forward error correction (FEC) technology can significantly boost the performance of a transmission system. In this paper, we propose a probabilistic shaping distribution matching algorithm employing uneven segmentation for data center optical networks, while keeping extremely low computational complexity for both encoding and decoding. Based on the proposed probabilistic shaping distribution matching algorithm, we develop a novel integrated scheme of PS and FEC coding that lifts the restrictions on the use of FEC technology and increases the use of interleaver. An experiment used to evaluate the probabilistically shaped data transmission is successfully conducted over a 25 km standard single-mode fiber (SSMF) with 16 quadrature amplitude modulation (16-QAM). Simultaneously, we use a simulation software to analyze the bit error rate performance at higher resolution. The results show that the joint coding scheme can achieve a 0.4dB performance improvement compared with the single FEC system.

摘要

概率整形(PS)技术和前向纠错(FEC)技术的结合可以显著提高传输系统的性能。在本文中,我们提出了一种用于数据中心光网络的采用不均匀分段的概率整形分布匹配算法,同时保持编码和解码的计算复杂度极低。基于所提出的概率整形分布匹配算法,我们开发了一种新颖的PS和FEC编码集成方案,该方案解除了对FEC技术使用的限制,并增加了交织器的使用。在25公里标准单模光纤(SSMF)上成功进行了一个用于评估概率整形数据传输的实验,采用16正交幅度调制(16-QAM)。同时,我们使用仿真软件以更高分辨率分析误码率性能。结果表明,与单FEC系统相比,联合编码方案可实现0.4dB的性能提升。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验