Suppr超能文献

元素组成、2 到 300 K 的热容和 5 种微生物物种的衍生热力学函数。

Elemental composition, heat capacity from 2 to 300 K and derived thermodynamic functions of 5 microorganism species.

机构信息

Biothermodynamics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Maximus-von-Imhof-Forum 2, Freising, 85354, Germany.

ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK.

出版信息

J Biotechnol. 2021 Apr 10;331:99-107. doi: 10.1016/j.jbiotec.2021.03.006. Epub 2021 Mar 13.

Abstract

Detailed elemental analysis and low-temperature calorimetric measurement results are reported for the first time for Gram-positive bacteria, Gram-negative bacteria and mold fungi. Microorganism unit carbon formulas (empirical formulas) were calculated. Standard molar heat capacity and entropy were found to be C⁰ = 38.200 J/C-mol K and S⁰ = 31.234 J/C-mol K for Escherichia coli, C⁰ = 54.188 J/C-mol K and S⁰ = 47.141 J/C-mol K for Gluconobacter oxydans, C⁰ = 31.475 J/C-mol K and S⁰ = 33.222 J/C-mol K for Pseudomonas fluorescens, C⁰ = 38.118 J/C-mol K and S⁰ = 37.042 J/C-mol K for Streptococcus thermophilus, and C⁰ = 35.470 J/C-mol K and S⁰ = 34.393 J/C-mol K for Penicillium chrysogenum. Microorganism heat capacities below 10 K were best described by an expanded Debye-T³ law. Based on the collected data, empirical formulas and entropies per C-mole of the analyzed organisms were determined. The measured heat capacities were compared to predictions of Kopp's rule and Hurst-Harrison equation, both of which were found to be able to give reasonably accurate predictions. The determined entropies were compared to predictions of Battley and Roels models. The Battley model was found to be more accurate. The measured microorganism entropies lay between the values of their principal macromolecular constituents: DNA, and globular and fibrillar proteins. This indicates that self-assembly of the macromolecular components into cellular structures does not lead to decrease in thermal entropy.

摘要

首次报道了革兰氏阳性菌、革兰氏阴性菌和霉菌真菌的详细元素分析和低温量热测量结果。计算了微生物单位碳公式(经验公式)。发现大肠杆菌的标准摩尔热容和熵为 C⁰ = 38.200 J/C-mol K 和 S⁰ = 31.234 J/C-mol K,氧化葡萄糖酸菌的 C⁰ = 54.188 J/C-mol K 和 S⁰ = 47.141 J/C-mol K,荧光假单胞菌的 C⁰ = 31.475 J/C-mol K 和 S⁰ = 33.222 J/C-mol K,嗜热链球菌的 C⁰ = 38.118 J/C-mol K 和 S⁰ = 37.042 J/C-mol K,以及产黄青霉的 C⁰ = 35.470 J/C-mol K 和 S⁰ = 34.393 J/C-mol K。微生物在 10 K 以下的热容最好用扩展的德拜 T³定律来描述。根据收集的数据,确定了分析生物的经验公式和每摩尔 C 的熵。测量的热容与 Kopp 定律和 Hurst-Harrison 方程的预测进行了比较,发现两者都能给出相当准确的预测。测定的熵与 Battley 和 Roels 模型的预测进行了比较。发现 Battley 模型更准确。测量的微生物熵值介于其主要大分子成分(DNA 以及球状和纤维状蛋白质)的值之间。这表明,大分子成分自组装成细胞结构不会导致热熵降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验