Carlos Corey, Wang Yizhan, Wang Jingyu, Li Jun, Wang Xudong
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
Research (Wash D C). 2021 Feb 25;2021:1519340. doi: 10.34133/2021/1519340. eCollection 2021.
A quantitative understanding of the nanoscale piezoelectric property will unlock many application potentials of the electromechanical coupling phenomenon under quantum confinement. In this work, we present an atomic force microscopy- (AFM-) based approach to the quantification of the nanometer-scale piezoelectric property from single-crystalline zinc oxide nanosheets (NSs) with thicknesses ranging from 1 to 4 nm. By identifying the appropriate driving potential, we minimized the influences from electrostatic interactions and tip-sample coupling, and extrapolated the thickness-dependent piezoelectric coefficient ( ). By averaging the measured from NSs with the same number of unit cells in thickness, an intriguing tri-unit-cell relationship was observed. From NSs with 3 unit cell thickness ( = 1, 2, 3), a bulk-like at a value of ~9 pm/V was obtained, whereas NSs with other thickness showed a ~30% higher of ~12 pm/V. Quantification of as a function of ZnO unit cell numbers offers a new experimental discovery toward nanoscale piezoelectricity from nonlayered materials that are piezoelectric in bulk.
对纳米级压电特性的定量理解将开启量子限制下机电耦合现象的许多应用潜力。在这项工作中,我们提出了一种基于原子力显微镜(AFM)的方法,用于从厚度范围为1至4nm的单晶氧化锌纳米片(NSs)中定量纳米级压电特性。通过确定合适的驱动电势,我们将静电相互作用和针尖-样品耦合的影响降至最低,并推断出厚度依赖的压电系数( )。通过对厚度具有相同单元胞数的纳米片所测量的 进行平均,观察到了一种有趣的三单元胞关系。从具有3个单元胞厚度( = 1、2、3)的纳米片中,获得了约9pm/V的类似体相的 ,而其他厚度的纳米片显示出约12pm/V的 ,高出约30%。将 定量为氧化锌单元胞数的函数,为来自体相具有压电性的非层状材料的纳米级压电性提供了新的实验发现。