Li Juan, Wang Jing, Wu Zhenzhen, Tao Shanshan, Jiang Donglin
Institute of Crystalline Materials, Shanxi University, Wucheng Rd No 92, Taiyuan, 030006, China.
Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
Angew Chem Int Ed Engl. 2021 Jun 1;60(23):12918-12923. doi: 10.1002/anie.202101400. Epub 2021 Apr 30.
Polybenzimidazoles are engineering plastics with superb thermal stability and this specificity has sparked a wide-ranging research to explore proton-conducting materials. Nevertheless, such materials encounter challenging issues owing to phosphoric acid proton carrier leakage and slow proton transport. We report a strategy for designing porous polybenzimidazole frameworks to address these key fundamental issues. The built-in channels are designed to be one-dimensionally extended, unidirectionally aligned, and fully occupied by neat phosphoric acid, while the benzimidazole walls trigger multipoint, multichain, and multitype interactions to spatially confine a phosphoric acid network in pores and facilitate proton conduction via deprotonation. The materials exhibit ultrafast and stable proton conduction for low proton carrier content and activation energy-a set of features highly desired for proton transport. Our results offer a design strategy for the fabrication of porous polybenzimidazoles for use in energy conversion applications.
聚苯并咪唑是具有卓越热稳定性的工程塑料,这种特性引发了广泛的研究以探索质子传导材料。然而,由于磷酸质子载体泄漏和质子传输缓慢,此类材料面临着具有挑战性的问题。我们报告了一种设计多孔聚苯并咪唑框架的策略,以解决这些关键的基本问题。内置通道被设计为一维延伸、单向排列,并完全被纯磷酸占据,而苯并咪唑壁引发多点、多链和多类型相互作用,在空间上限制孔内的磷酸网络,并通过去质子化促进质子传导。对于低质子载体含量和活化能,这些材料表现出超快且稳定的质子传导——这是质子传输非常期望具备的一组特性。我们的结果为制造用于能量转换应用的多孔聚苯并咪唑提供了一种设计策略。