Universidade Estadual do Norte Fluminense, Centro de Biociências e Biotecnologia, Laboratório de Biologia Celular e Tecidual, Campos dos Goytacazes, RJ, Brasil.
Centro Universitário Estadual da Zona Oeste, Colegiado de Ciências Biológicas e da Saúde, Laboratório de Tecnologia em Bioquímica e Microscopia, Rio de Janeiro, RJ, Brasil.
Mem Inst Oswaldo Cruz. 2021 Mar 10;116:e200417. doi: 10.1590/0074-02760200417. eCollection 2021.
Toxoplasma gondii causes toxoplasmosis and is controlled by activated macrophages. However, infection of macrophages by tachyzoites induces TGF-β signaling (TGF-s) inhibiting nitric oxide (NO) production. NO inhibition may be a general escape mechanism of distinct T. gondii strains.
To evaluate in activated macrophages the capacity of T. gondii strains of different virulence and genetics (RH, type I; ME-49, type II; VEG, type III; P-Br, recombinant) to evade the NO microbicidal defense system and determine LC3 loading to the parasitophorous vacuole.
Activated peritoneal macrophages were infected with the different T. gondii strains, NO-production was evaluated by the Griess reagent, and inducible nitric oxide synthase expression, TGF-s, and LC3 localisation assayed by immunofluorescence.
Only RH persisted in macrophages, while VEG was more resistant than P-Br and ME-49. All strains induced TGF-s, degradation of inducible nitric oxide synthase, and NO-production inhibition from 2 to 24 h of infection, but only RH sustained these alterations for 48 h. By 24 h of infection, TGF-s lowered in macrophages infected by ME-49, and P-Br, and NO-production recovered, while VEG sustained TGF-s and NO-production inhibition longer. LC3 loading to parasitophorous vacuole was strain-dependent: higher for ME-49, P-Br and VEG, lower for RH. All strains inhibited NO-production, but only RH sustained this effect probably because it persisted in macrophages due to additional evasive mechanisms as lower LC3 loading to parasitophorous vacuole.
These results support that T. gondii can escape the NO microbicidal defense system at the initial phase of the infection, but only the virulent strain sustain this evasion mechanism.
刚地弓形虫引起弓形体病,并被激活的巨噬细胞所控制。然而,速殖子感染巨噬细胞后会诱导 TGF-β信号(TGF-s)抑制一氧化氮(NO)的产生。NO 的抑制可能是不同刚地弓形虫株的一种普遍逃避机制。
评估不同毒力和遗传型(RH,I 型;ME-49,II 型;VEG,III 型;P-Br,重组型)的刚地弓形虫株在激活的巨噬细胞中逃避 NO 杀菌防御系统的能力,并确定 LC3 向吞噬空泡的加载。
用不同的刚地弓形虫株感染激活的腹腔巨噬细胞,通过格里希试剂评估 NO 的产生,通过免疫荧光法检测诱导型一氧化氮合酶表达、TGF-s 和 LC3 的定位。
只有 RH 株能在巨噬细胞内存活,而 VEG 株比 P-Br 和 ME-49 株更具抗性。所有株均诱导 TGF-s、诱导型一氧化氮合酶降解和感染后 2 至 24 小时的 NO 产生抑制,但只有 RH 株能持续 48 小时。在感染后 24 小时,ME-49、P-Br 和 VEG 感染的巨噬细胞中 TGF-s 降低,NO 产生恢复,而 VEG 株则能更长时间地维持 TGF-s 和 NO 产生抑制。LC3 向吞噬空泡的加载与株有关:ME-49、P-Br 和 VEG 株较高,RH 株较低。所有株均抑制 NO 的产生,但只有 RH 株能持续这种效应,可能是因为它由于额外的逃避机制,如 LC3 向吞噬空泡的加载较低,而在巨噬细胞中持续存在。
这些结果表明,刚地弓形虫在感染的初始阶段可以逃避 NO 的杀菌防御系统,但只有毒力株能维持这种逃避机制。