Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China.
Environ Sci Technol. 2021 Apr 20;55(8):5357-5370. doi: 10.1021/acs.est.0c07794. Epub 2021 Mar 17.
Pollutant degradation via periodate (IO)-based advanced oxidation processes (AOPs) provides an economical, energy-efficient way for sustainable pollution control. Although single-atomic metal activation (SMA) can be exploited to optimize the pollution degradation process and understand the associated mechanisms governing IO-based AOPs, studies on this topic are rare. Herein, we demonstrated the first instance of using SMA for IO analysis by employing atomically dispersed Co active sites supported by N-doped graphene (N-rGO-CoSA) activators. N-rGO-CoSA efficiently activated IO for organic pollutant degradation over a wide pH range without producing radical species. The IO species underwent stoichiometric decomposition to generate the iodate (IO) species. Whereas Co and CoO could not drive IO activation; the Co-N coordination sites exhibited high activation efficiency. The conductive graphene matrix reduced the contaminants/electron transport distance/resistance for these oxidation reactions and boosted the activation capacity by working in conjunction with metal centers. The N-rGO-CoSA/IO system exhibited a substrate-dependent reactivity that was not caused by iodyl (IO) radicals. Electrochemical experiments demonstrated that the N-rGO-CoSA/IO system decomposed organic pollutants via electron-transfer-mediated nonradical processes, where N-rGO-CoSA/periodate* metastable complexes were the predominant oxidants, thereby opening a new avenue for designing efficient IO activators for the selective oxidation of organic pollutants.
过碘酸盐 (IO) 基高级氧化工艺 (AOPs) 通过降解污染物,为可持续污染控制提供了一种经济、节能的方法。尽管单原子金属活化 (SMA) 可用于优化污染降解过程并理解 IO 基 AOPs 的相关机制,但该主题的研究很少。在此,我们首次展示了通过使用原子分散的 Co 活性位负载在 N 掺杂石墨烯 (N-rGO-CoSA) 上的 SMA 对 IO 进行分析。N-rGO-CoSA 在很宽的 pH 范围内高效地激活 IO 以降解有机污染物,而不会产生自由基。IO 物种经历化学计量分解,生成碘酸盐 (IO) 物种。虽然 Co 和 CoO 不能驱动 IO 活化;但 Co-N 配位位点表现出高的活化效率。导电石墨烯基质通过与金属中心协同作用,降低了这些氧化反应的污染物/电子传输距离/电阻,从而提高了活化能力。N-rGO-CoSA/IO 体系表现出一种底物依赖性反应性,而不是由碘基 (IO) 自由基引起的。电化学实验表明,N-rGO-CoSA/IO 体系通过电子转移介导的非自由基过程降解有机污染物,其中 N-rGO-CoSA/过碘酸盐*亚稳配合物是主要氧化剂,从而为设计高效 IO 活化剂以选择性氧化有机污染物开辟了新途径。