Suppr超能文献

用于线状柔性超级电容器的还原氧化石墨烯和MXene纳米片的逐层组装

Layer-by-Layer Assembly of Reduced Graphene Oxide and MXene Nanosheets for Wire-Shaped Flexible Supercapacitors.

作者信息

Yun Junyeong, Echols Ian, Flouda Paraskevi, Chen Yijun, Wang Shaoyang, Zhao Xiaofei, Holta Dustin, Radovic Miladin, Green Micah J, Naraghi Mohammad, Lutkenhaus Jodie L

机构信息

Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.

Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States.

出版信息

ACS Appl Mater Interfaces. 2021 Mar 31;13(12):14068-14076. doi: 10.1021/acsami.0c19619. Epub 2021 Mar 17.

Abstract

As the demand for wearable electronic devices increases, interest in small, light, and deformable energy storage devices follows suit. Among these devices, wire-shaped supercapacitors (WSCs) are considered key components of wearable technology due to their geometric similarity to woven fiber. One potential method for creating WSC devices is the layer-by-layer (LbL) assembly technique, which is a "bottom-up" method for electrode fabrication. WSCs require conformal and adhesive coatings of the functional material to the wire-shaped substrate, which is difficult to obtain with other processing techniques such as vacuum filtration or spray-coating. However, the LbL assembly technique produces conformal and robust coatings that can be deposited onto a variety of substrates and shapes, including wires. In this study, we report WSCs made using the LbL assembly of alternating layers of positively charged reduced graphene oxide functionalized with poly(diallyldimethylammonium chloride) and negatively charged TiCT MXene nanosheets conformally deposited on activated carbon yarns. In this construct, the added LbL film enhances capacitance, energy density, and power density by 240, 227, and 109%, respectively, relative to the uncoated activated carbon yarn, yielding high specific and volumetric capacitances (237 F g, 2193 F cm). In addition, the WSC possesses good mechanical stability, retaining 90% of its initial capacity after 200 bending cycles. This study demonstrates that LbL coatings on carbon yarns are promising as linear energy storage devices for fibrous electronics.

摘要

随着对可穿戴电子设备需求的增加,对小型、轻便且可变形储能设备的兴趣也随之增长。在这些设备中,线状超级电容器(WSC)因其与编织纤维在几何形状上的相似性,被视为可穿戴技术的关键组件。制造WSC设备的一种潜在方法是逐层(LbL)组装技术,这是一种用于电极制造的“自下而上”方法。WSC需要将功能材料以保形且粘附的方式涂覆到线状基材上,而这用其他处理技术(如真空过滤或喷涂)很难实现。然而,LbL组装技术能产生保形且坚固的涂层,可沉积在包括电线在内的各种基材和形状上。在本研究中,我们报告了通过将用聚(二烯丙基二甲基氯化铵)功能化的带正电还原氧化石墨烯与带负电的TiCT MXene纳米片交替层进行LbL组装,然后保形沉积在活性炭纱线上制成的WSC。在这种结构中,相对于未涂覆的活性炭纱线,添加的LbL膜分别将电容、能量密度和功率密度提高了240%、227%和109%,产生了高比电容和体积电容(237 F/g,2193 F/cm³)。此外,该WSC具有良好的机械稳定性,在200次弯曲循环后仍保留其初始容量的90%。这项研究表明,碳纱线上的LbL涂层作为用于纤维电子学的线性能量存储设备具有广阔前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验