Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States.
Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
ACS Nano. 2024 Aug 27;18(34):23217-23231. doi: 10.1021/acsnano.4c05797. Epub 2024 Aug 14.
Flexible fiber-based microelectrodes allow safe and chronic investigation and modulation of electrically active cells and tissues. Compared to planar electrodes, they enhance targeting precision while minimizing side effects from the device-tissue mechanical mismatch. However, the current manufacturing methods face scalability, reproducibility, and handling challenges, hindering large-scale deployment. Furthermore, only a few designs can record electrical and biochemical signals necessary for understanding and interacting with complex biological systems. In this study, we present a method that utilizes the electrical conductivity and easy processability of MXenes, a diverse family of two-dimensional nanomaterials, to apply a thin layer of MXene coating continuously to commercial nylon filaments (30-300 μm in diameter) at a rapid speed (up to 15 mm/s), achieving a linear resistance below 10 Ω/cm. The MXene-coated filaments are then batch-processed into free-standing fiber microelectrodes with excellent flexibility, durability, and consistent performance even when knotted. We demonstrate the electrochemical properties of these fiber electrodes and their hydrogen peroxide (HO) sensing capability and showcase their applications (rodent) and (bladder tissue). This scalable process fabricates high-performance microfiber electrodes that can be easily customized and deployed in diverse bioelectronic monitoring and stimulation studies, contributing to a deeper understanding of health and disease.
基于柔性纤维的微电极允许对电活性细胞和组织进行安全的慢性研究和调节。与平面电极相比,它们提高了靶向精度,同时最小化了器件-组织机械不匹配引起的副作用。然而,当前的制造方法面临着可扩展性、可重复性和处理挑战,阻碍了大规模部署。此外,只有少数设计可以记录理解和与复杂生物系统相互作用所需的电和生化信号。在本研究中,我们提出了一种方法,该方法利用 MXenes(二维纳米材料的一个多样化家族)的导电性和易于加工性,以快速的速度(高达 15mm/s)将 MXene 涂层连续施加到商业尼龙纤维(直径 30-300μm)上,实现了低于 10Ω/cm 的线性电阻。然后,将涂有 MXene 的纤维批量处理成独立式纤维微电极,即使打结也具有极好的柔韧性、耐用性和一致的性能。我们展示了这些纤维电极的电化学性质及其对过氧化氢 (HO) 的传感能力,并展示了它们在(啮齿动物)和(膀胱组织)中的应用。这种可扩展的工艺制造出了高性能的微纤维电极,可以轻松定制并应用于各种生物电子监测和刺激研究,有助于更深入地了解健康和疾病。