Suppr超能文献

基于先验图像的 CT 重建技术:利用衰减失配先验知识。

Prior-image-based CT reconstruction using attenuation-mismatched priors.

机构信息

Department of Radiation Oncology, Stanford University School of Medicine, California, United States of America. Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States of America.

出版信息

Phys Med Biol. 2021 Mar 17;66(6):064007. doi: 10.1088/1361-6560/abe760.

Abstract

Prior-image-based reconstruction (PIBR) methods are powerful tools for reducing radiation doses and improving the image quality of low-dose computed tomography (CT). Apart from anatomical changes, prior and current images can also have different attenuations because they originated from different scanners or from the same scanner but with different x-ray beam qualities (e.g., kVp settings, beam filters) during data acquisition. In such scenarios, with attenuation-mismatched priors, PIBR is challenging. In this work, we investigate a specific PIBR method, called statistical image reconstruction, using normal-dose image-induced nonlocal means regularization (SIR-ndiNLM), to address PIBR with such attenuation-mismatched priors and achieve quantitative low-dose CT imaging. We propose two corrective schemes for the original SIR-ndiNLM method, (1) a global histogram-matching approach and (2) a local attenuation correction approach, to account for the attenuation differences between the prior and current images in PIBR. We validate the efficacy of the proposed schemes using images acquired from dual-energy CT scanners to simulate attenuation mismatches. Meanwhile, we utilize different CT slices to simulate anatomical mismatches or changes between the prior and the current low-dose image. We observe that the original SIR-ndiNLM introduces artifacts to the reconstruction when an attenuation-mismatched prior is used. Furthermore, we find that a larger attenuation mismatch between the prior and current images results in more severe artifacts in the SIR-ndiNLM reconstruction. Our two proposed corrective schemes enable SIR-ndiNLM to effectively handle the attenuation mismatch and anatomical changes between the two images and successfully eliminate the artifacts. We demonstrate that the proposed techniques permit SIR-ndiNLM to leverage the attenuation-mismatched prior and achieve quantitative low-dose CT reconstruction from both low-flux and sparse-view data acquisitions. This work permits robust and reliable PIBR for CT data acquired using different beam settings.

摘要

基于先验图像的重建(PIBR)方法是降低辐射剂量和提高低剂量 CT 图像质量的有力工具。除了解剖结构的变化,先验图像和当前图像也可能具有不同的衰减,因为它们来自不同的扫描仪,或者来自同一台扫描仪,但在数据采集期间具有不同的 X 射线束质量(例如,kVp 设置、束滤器)。在这种情况下,使用不匹配的衰减先验图像,PIBR 具有挑战性。在这项工作中,我们研究了一种特定的 PIBR 方法,称为统计图像重建,使用正常剂量图像诱导的非局部均值正则化(SIR-ndiNLM),以解决具有这种衰减不匹配先验的 PIBR 问题,并实现定量的低剂量 CT 成像。我们提出了两种校正方案来纠正原始的 SIR-ndiNLM 方法,(1)全局直方图匹配方法和(2)局部衰减校正方法,以考虑 PIBR 中先验图像和当前图像之间的衰减差异。我们使用从双能 CT 扫描仪获取的图像来模拟衰减不匹配,验证了所提出方案的有效性。同时,我们利用不同的 CT 切片来模拟先验和当前低剂量图像之间的解剖结构不匹配或变化。我们观察到,当使用不匹配的衰减先验时,原始的 SIR-ndiNLM 会给重建引入伪影。此外,我们发现先验图像和当前图像之间的衰减不匹配越大,SIR-ndiNLM 重建中的伪影越严重。我们提出的两种校正方案使 SIR-ndiNLM 能够有效地处理两幅图像之间的衰减不匹配和解剖结构变化,并成功消除伪影。我们证明,所提出的技术允许 SIR-ndiNLM 利用不匹配的衰减先验,并从低通量和稀疏视图数据采集实现定量的低剂量 CT 重建。这项工作允许对使用不同束设置采集的 CT 数据进行稳健和可靠的 PIBR。

相似文献

1
Prior-image-based CT reconstruction using attenuation-mismatched priors.
Phys Med Biol. 2021 Mar 17;66(6):064007. doi: 10.1088/1361-6560/abe760.
3
Regularization Analysis and Design for Prior-Image-Based X-Ray CT Reconstruction.
IEEE Trans Med Imaging. 2018 Dec;37(12):2675-2686. doi: 10.1109/TMI.2018.2847250. Epub 2018 Jun 13.
4
Efficient low-dose CT artifact mitigation using an artifact-matched prior scan.
Med Phys. 2012 Aug;39(8):4748-60. doi: 10.1118/1.4736528.
5
Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms.
Phys Med Biol. 2015 Oct 7;60(19):7437-60. doi: 10.1088/0031-9155/60/19/7437. Epub 2015 Sep 9.
6
Low-dose computed tomography image restoration using previous normal-dose scan.
Med Phys. 2011 Oct;38(10):5713-31. doi: 10.1118/1.3638125.
7
Prospective regularization design in prior-image-based reconstruction.
Phys Med Biol. 2015 Dec 21;60(24):9515-36. doi: 10.1088/0031-9155/60/24/9515. Epub 2015 Nov 25.
8
Median prior constrained TV algorithm for sparse view low-dose CT reconstruction.
Comput Biol Med. 2015 May;60:117-31. doi: 10.1016/j.compbiomed.2015.03.003. Epub 2015 Mar 16.

引用本文的文献

1
A low-dose CT reconstruction method using sub-pixel anisotropic diffusion.
Nan Fang Yi Ke Da Xue Xue Bao. 2025 Jan 20;45(1):162-169. doi: 10.12122/j.issn.1673-4254.2025.01.19.

本文引用的文献

2
SparseCT: System concept and design of multislit collimators.
Med Phys. 2019 Jun;46(6):2589-2599. doi: 10.1002/mp.13544. Epub 2019 May 6.
5
Regularization strategies in statistical image reconstruction of low-dose x-ray CT: A review.
Med Phys. 2018 Oct;45(10):e886-e907. doi: 10.1002/mp.13123. Epub 2018 Sep 10.
6
Regularization Analysis and Design for Prior-Image-Based X-Ray CT Reconstruction.
IEEE Trans Med Imaging. 2018 Dec;37(12):2675-2686. doi: 10.1109/TMI.2018.2847250. Epub 2018 Jun 13.
7
Iterative Low-Dose CT Reconstruction With Priors Trained by Artificial Neural Network.
IEEE Trans Med Imaging. 2017 Dec;36(12):2479-2486. doi: 10.1109/TMI.2017.2753138. Epub 2017 Sep 15.
9
Discriminative Feature Representation to Improve Projection Data Inconsistency for Low Dose CT Imaging.
IEEE Trans Med Imaging. 2017 Dec;36(12):2499-2509. doi: 10.1109/TMI.2017.2739841. Epub 2017 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验