Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
Diabetologia. 2021 May;64(5):994-1006. doi: 10.1007/s00125-021-05415-5. Epub 2021 Mar 17.
Insulin resistance is one of the earliest defects in the pathogenesis of type 2 diabetes. Over the past 50 years, elucidation of the insulin signalling network has provided important mechanistic insights into the abnormalities of glucose, lipid and protein metabolism that underlie insulin resistance. In classical target tissues (liver, muscle and adipose tissue), insulin binding to its receptor initiates a broad signalling cascade mediated by changes in phosphorylation, gene expression and vesicular trafficking that result in increased nutrient utilisation and storage, and suppression of catabolic processes. Insulin receptors are also expressed in non-classical targets, such as the brain and endothelial cells, where it helps regulate appetite, energy expenditure, reproductive hormones, mood/behaviour and vascular function. Recent progress in cell biology and unbiased molecular profiling by mass spectrometry and DNA/RNA-sequencing has provided a unique opportunity to dissect the determinants of insulin resistance in type 2 diabetes and the metabolic syndrome; best studied are extrinsic factors, such as circulating lipids, amino acids and other metabolites and exosomal microRNAs. More challenging has been defining the cell-intrinsic factors programmed by genetics and epigenetics that underlie insulin resistance. In this regard, studies using human induced pluripotent stem cells and tissues point to cell-autonomous alterations in signalling super-networks, involving changes in phosphorylation and gene expression both inside and outside the canonical insulin signalling pathway. Understanding how these multi-layered molecular networks modulate insulin action and metabolism in different tissues will open new avenues for therapy and prevention of type 2 diabetes and its associated pathologies.
胰岛素抵抗是 2 型糖尿病发病机制中最早出现的缺陷之一。在过去的 50 年中,对胰岛素信号网络的阐明为阐明导致胰岛素抵抗的葡萄糖、脂质和蛋白质代谢异常提供了重要的机制见解。在经典靶组织(肝脏、肌肉和脂肪组织)中,胰岛素与其受体结合会引发广泛的信号级联反应,该反应通过磷酸化、基因表达和小泡运输的变化介导,从而导致营养物质的利用和储存增加,以及分解代谢过程的抑制。胰岛素受体也在非经典靶标(如大脑和内皮细胞)中表达,在这些靶标中,它有助于调节食欲、能量消耗、生殖激素、情绪/行为和血管功能。细胞生物学的最新进展以及通过质谱和 DNA/RNA 测序进行的无偏分子分析为剖析 2 型糖尿病和代谢综合征中胰岛素抵抗的决定因素提供了独特的机会;研究最多的是外源性因素,如循环脂质、氨基酸和其他代谢物以及外泌体 microRNAs。更具挑战性的是定义由遗传学和表观遗传学编程的细胞内在因素,这些因素是胰岛素抵抗的基础。在这方面,使用人类诱导多能干细胞和组织的研究表明,涉及磷酸化和基因表达变化的信号超级网络的细胞自主性改变,这些变化既发生在经典胰岛素信号通路内部,也发生在其外部。了解这些多层次分子网络如何调节不同组织中的胰岛素作用和代谢将为 2 型糖尿病及其相关病理的治疗和预防开辟新途径。