Suppr超能文献

环形枢轴多边形的操作原理。

Operating principles of circular toggle polygons.

机构信息

Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.

Undergraduate Programme, Indian Institute of Science, Bangalore, India.

出版信息

Phys Biol. 2021 May 13;18(4). doi: 10.1088/1478-3975/abef79.

Abstract

Decoding the dynamics of cellular decision-making and cell differentiation is a central question in cell and developmental biology. A common network motif involved in many cell-fate decisions is a mutually inhibitory feedback loop between two self-activating 'master regulators' A and B, also called as toggle switch. Typically, it can allow for three stable states-(high A, low B), (low A, high B) and (medium A, medium B). A toggle triad-three mutually repressing regulators A, B and C, i.e. three toggle switches arranged circularly (between A and B, between B and C, and between A and C)-can allow for six stable states: three 'single positive' and three 'double positive' ones. However, the operating principles of larger toggle polygons, i.e. toggle switches arranged circularly to form a polygon, remain unclear. Here, we simulate using both discrete and continuous methods the dynamics of different sized toggle polygons. We observed a pattern in their steady state frequency depending on whether the polygon was an even or odd numbered one. The even-numbered toggle polygons result in two dominant states with consecutive components of the network expressing alternating high and low levels. The odd-numbered toggle polygons, on the other hand, enable more number of states, usually twice the number of components with the states that follow 'circular permutation' patterns in their composition. Incorporating self-activations preserved these trends while increasing the frequency of multistability in the corresponding network. Our results offer insights into design principles of circular arrangement of regulatory units involved in cell-fate decision making, and can offer design strategies for synthesizing genetic circuits.

摘要

解析细胞决策和细胞分化的动力学是细胞和发育生物学的核心问题。在许多细胞命运决定中涉及的一个常见网络基元是两个自我激活的“主调控因子”A 和 B 之间的相互抑制反馈环,也称为 toggle switch。通常,它可以允许三种稳定状态-(高 A,低 B),(低 A,高 B)和(中 A,中 B)。A toggle 三体-三个相互抑制的调节剂 A、B 和 C,即三个 toggle switch 以圆形排列(A 和 B 之间、B 和 C 之间以及 A 和 C 之间)-可以允许六种稳定状态:三种“单阳性”和三种“双阳性”。然而,较大的 toggle 多边形(即圆形排列以形成多边形的 toggle switch)的操作原理仍不清楚。在这里,我们使用离散和连续方法模拟了不同大小的 toggle 多边形的动力学。我们观察到它们在稳定状态频率上的模式取决于多边形是偶数还是奇数。偶数 toggle 多边形导致两个主要状态,网络的连续组件表达交替的高低水平。另一方面,奇数 toggle 多边形可以实现更多数量的状态,通常是组件数量的两倍,并且状态在其组成中遵循“循环排列”模式。自我激活保留了这些趋势,同时增加了相应网络中多稳定性的频率。我们的结果提供了关于参与细胞命运决定的调节单元圆形排列的设计原则的见解,并可以为合成遗传电路提供设计策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验