Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States of America.
J Neural Eng. 2021 Apr 27;18(4). doi: 10.1088/1741-2552/abef89.
Non-invasive light delivery into the brain is needed foroptogenetics to avoid physical damage. An innovative strategy could employ x-ray activation of radioluminescent particles (RLPs) to emit localized light. However, modulation of neuronal or synaptic function by x-ray induced radioluminescence from RLPs has not yet been demonstrated.Molecular and electrophysiological approaches were used to determine if x-ray dependent radioluminescence emitted from RLPs can activate light sensitive proteins. RLPs composed of cerium doped lutetium oxyorthosilicate (LSO:Ce), an inorganic scintillator that emits blue light, were used as they are biocompatible with neuronal function and synaptic transmission.We show that 30 min of x-ray exposure at a rate of 0.042 Gy scaused no change in the strength of basal glutamatergic transmission during extracellular field recordings in mouse hippocampal slices. Additionally, long-term potentiation, a robust measure of synaptic integrity, was induced after x-ray exposure and expressed at a magnitude not different from control conditions (absence of x-rays). We found that x-ray stimulation of RLPs elevated cAMP levels in HEK293T cells expressing OptoXR, a chimeric opsin receptor that combines the extracellular light-sensitive domain of rhodopsin with an intracellular second messenger signaling cascade. This demonstrates that x-ray radioluminescence from LSO:Ce particles can activate OptoXR. Next, we tested whether x-ray activation of the RLPs can enhance synaptic activity in whole-cell recordings from hippocampal neurons expressing channelrhodopsin-2, both in cell culture and acute hippocampal slices. Importantly, x-ray radioluminescence caused an increase in the frequency of spontaneous excitatory postsynaptic currents in both systems, indicating activation of channelrhodopsin-2 and excitation of neurons.Together, our results show that x-ray activation of LSO:Ce particles can heighten cellular and synaptic function. The combination of LSO:Ce inorganic scintillators and x-rays is therefore a viable method for optogenetics as an alternative to more invasive light delivery methods.
非侵入性的大脑内光传递对于光遗传学来说是必需的,以避免物理损伤。一种创新的策略可以利用 X 射线激活放射发光粒子(RLP)来发射局部光。然而,X 射线诱导的 RLP 放射发光对神经元或突触功能的调制尚未得到证实。本研究采用分子和电生理方法来确定 X 射线依赖的 RLP 放射发光是否可以激活光敏感蛋白。使用由掺铈硅酸镥(LSO:Ce)组成的 RLP,这是一种与神经元功能和突触传递兼容的无机闪烁体,发射蓝光。我们发现,在体外场记录中,在 30 分钟内以 0.042 Gy/s 的速率进行 X 射线照射不会改变基础谷氨酸能传递的强度。此外,在 X 射线照射后诱导了长期增强,这是突触完整性的一个有力指标,其表达幅度与对照条件(无 X 射线)没有差异。我们发现,在表达 OptoXR 的 HEK293T 细胞中,X 射线刺激 RLP 会升高 cAMP 水平,OptoXR 是一种嵌合光受体,它将视紫红质的细胞外光敏感结构域与细胞内第二信使信号级联结合在一起。这表明 LSO:Ce 粒子的 X 射线放射发光可以激活 OptoXR。接下来,我们测试了在表达通道视紫红质-2 的海马神经元的全细胞记录中,X 射线对 RLP 的激活是否可以增强突触活性,包括在细胞培养和急性海马切片中。重要的是,X 射线放射发光在这两个系统中均导致自发性兴奋性突触后电流频率增加,表明通道视紫红质-2 的激活和神经元的兴奋。总之,我们的结果表明,X 射线激活 LSO:Ce 粒子可以增强细胞和突触功能。因此,LSO:Ce 无机闪烁体与 X 射线的结合是光遗传学的一种可行方法,可替代更具侵入性的光传递方法。