Suppr超能文献

在生物尺寸比例研究中,多种比例对称分布。

Multiple scaled symmetric distributions in allometric studies.

机构信息

Dipartimento di Economia e Impresa, Università di Catania, Catania, Italy.

Dipartimento di Scienze Economiche e Sociali, Università Cattolica del Sacro Cuore, Piacenza, Italy.

出版信息

Int J Biostat. 2021 Jan 18;18(1):219-242. doi: 10.1515/ijb-2020-0059.

Abstract

In allometric studies, the joint distribution of the log-transformed morphometric variables is typically symmetric and with heavy tails. Moreover, in the bivariate case, it is customary to explain the morphometric variation of these variables by fitting a convenient line, as for example the first principal component (PC). To account for all these peculiarities, we propose the use of multiple scaled symmetric (MSS) distributions. These distributions have the advantage to be directly defined in the PC space, the kind of symmetry involved is less restrictive than the commonly considered elliptical symmetry, the behavior of the tails can vary across PCs, and their first PC is less sensitive to outliers. In the family of MSS distributions, we also propose the multiple scaled shifted exponential normal distribution, equivalent of the multivariate shifted exponential normal distribution in the MSS framework. For the sake of parsimony, we also allow the parameter governing the leptokurtosis on each PC, in the considered MSS distributions, to be tied across PCs. From an inferential point of view, we describe an EM algorithm to estimate the parameters by maximum likelihood, we illustrate how to compute standard errors of the obtained estimates, and we give statistical tests and confidence intervals for the parameters. We use artificial and real allometric data to appreciate the advantages of the MSS distributions over well-known elliptically symmetric distributions and to compare the robustness of the line from our models with respect to the lines fitted by well-established robust and non-robust methods available in the literature.

摘要

在异速生长研究中,对数转换后的形态变量的联合分布通常是对称的,并且具有重尾。此外,在二元情况下,通常通过拟合方便的线(例如第一主成分(PC))来解释这些变量的形态变异。为了考虑到所有这些特殊情况,我们建议使用多个缩放对称(MSS)分布。这些分布的优点是可以直接在 PC 空间中定义,所涉及的对称性比通常考虑的椭圆对称性限制更少,尾部的行为可以在 PC 之间变化,并且它们的第一 PC 对离群值不太敏感。在 MSS 分布族中,我们还提出了多个缩放偏移指数正态分布,这相当于在 MSS 框架中多变量偏移指数正态分布。为了简约起见,我们还允许在考虑的 MSS 分布中,每个 PC 上控制峰态的参数在 PC 之间绑定。从推理的角度来看,我们描述了一种通过最大似然法估计参数的 EM 算法,我们说明了如何计算获得的估计值的标准误差,并给出了参数的统计检验和置信区间。我们使用人工和真实的异速生长数据来评估 MSS 分布相对于知名的椭圆对称分布的优势,并比较我们模型中的线相对于文献中可用的稳健和非稳健方法拟合的线的稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验