Schroeter P, Vesin J M, Langenberger T, Meuli R
Signal Processing Laboratory, Swiss Federal Institute of Technology, Lausanne.
IEEE Trans Med Imaging. 1998 Apr;17(2):172-86. doi: 10.1109/42.700730.
This paper presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. Our goal is to estimate accurately the statistics of desired tissues in presence of other ones of lesser interest. These latter can be considered as outliers and can severely bias the estimates of the former. For this purpose, we introduce a first method, which is an extension of the expectation-maximization (EM) algorithm, that estimates parameters of Gaussian mixtures but incorporates an outlier rejection scheme which allows to compute the properties of the desired tissues in presence of atypical data. The second method is based on genetic algorithms and is well suited for estimating the parameters of mixtures of different kind of distributions. We use this property by adding a uniform distribution to the Gaussian mixture for modeling the outliers. The proposed genetic algorithm can efficiently estimate the parameters of this extended mixture for various initial settings. Also, by changing the minimization criterion, estimates of the parameters can be obtained by histogram fitting which considerably reduces the computational cost. Experiments on synthetic and real MR data show that accurate estimates of the gray and white matters parameters are computed.
本文提出了两种新方法,用于在磁共振(MR)数据分割的背景下对混合模型进行稳健的参数估计。头部由不同类型的组织构成,这些组织可以用多元高斯分布的有限混合模型来建模。我们的目标是在存在其他不太感兴趣的组织的情况下,准确估计所需组织的统计信息。后者可被视为异常值,会严重影响前者的估计结果。为此,我们引入了第一种方法,它是期望最大化(EM)算法的扩展,用于估计高斯混合模型的参数,但包含一个异常值剔除方案,该方案允许在存在非典型数据的情况下计算所需组织的特性。第二种方法基于遗传算法,非常适合估计不同类型分布的混合模型的参数。我们利用这一特性,通过在高斯混合模型中添加均匀分布来对异常值进行建模。所提出的遗传算法可以针对各种初始设置有效地估计这种扩展混合模型的参数。此外,通过改变最小化准则,可以通过直方图拟合获得参数估计值,这大大降低了计算成本。对合成和真实MR数据的实验表明,可以计算出灰质和白质参数的准确估计值。