Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131;
Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY 14850.
Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2010714118.
Geographic turnover in community composition is created and maintained by eco-evolutionary forces that limit the ranges of species. One such force may be antagonistic interactions among hosts and parasites, but its general importance is unknown. Understanding the processes that underpin turnover requires distinguishing the contributions of key abiotic and biotic drivers over a range of spatial and temporal scales. Here, we address these challenges using flexible, nonlinear models to identify the factors that underlie richness (alpha diversity) and turnover (beta diversity) patterns of interacting host and parasite communities in a global biodiversity hot spot. We sampled 18 communities in the Peruvian Andes, encompassing ∼1,350 bird species and ∼400 hemosporidian parasite lineages, and spanning broad ranges of elevation, climate, primary productivity, and species richness. Turnover in both parasite and host communities was most strongly predicted by variation in precipitation, but secondary predictors differed between parasites and hosts, and between contemporary and phylogenetic timescales. Host communities shaped parasite diversity patterns, but there was little evidence for reciprocal effects. The results for parasite communities contradicted the prevailing view that biotic interactions filter communities at local scales while environmental filtering and dispersal barriers shape regional communities. Rather, subtle differences in precipitation had strong, fine-scale effects on parasite turnover while host-community effects only manifested at broad scales. We used these models to map bird and parasite turnover onto the ecological gradients of the Andean landscape, illustrating beta-diversity hot spots and their mechanistic underpinnings.
地理上的群落组成变化是由限制物种分布范围的生态进化力量所产生和维持的。其中一种力量可能是宿主和寄生虫之间的拮抗相互作用,但它的普遍重要性尚不清楚。了解支持周转率的过程需要在一系列时空尺度上区分关键的非生物和生物驱动因素的贡献。在这里,我们使用灵活的非线性模型来解决这些挑战,以确定在秘鲁安第斯山脉的一个全球生物多样性热点地区相互作用的宿主和寄生虫群落的丰富度(α多样性)和周转率(β多样性)模式的基础因素。我们在安第斯山脉的 18 个群落中进行了采样,这些群落包含了大约 1350 种鸟类和大约 400 种血孢子虫寄生虫谱系,涵盖了广泛的海拔、气候、初级生产力和物种丰富度范围。寄生虫和宿主群落的周转率都与降水的变化密切相关,但在寄生虫和宿主之间,以及在当代和系统发育时间尺度上,次要预测因子存在差异。宿主群落塑造了寄生虫多样性模式,但很少有证据表明存在相互作用。寄生虫群落的结果与流行观点相矛盾,后者认为生物相互作用在局部尺度上过滤群落,而环境过滤和扩散障碍则塑造了区域群落。相反,降水的细微差异对寄生虫的周转率有很强的、细微的影响,而宿主群落的影响仅在广泛的尺度上显现。我们使用这些模型将鸟类和寄生虫的周转率映射到安第斯山脉景观的生态梯度上,说明了β多样性热点及其机制基础。