Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou, China.
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China.
Transl Psychiatry. 2021 Mar 17;11(1):175. doi: 10.1038/s41398-021-01294-x.
Schizophrenia (SCZ) is a polygenic disease with a heritability approaching 80%. Over 100 SCZ-related loci have so far been identified by genome-wide association studies (GWAS). However, the risk genes associated with these loci often remain unknown. We present a new risk gene predictor, rGAT-omics, that integrates multi-omics data under a Bayesian framework by combining the Hotelling and Box-Cox transformations. The Bayesian framework was constructed using gene ontology, tissue-specific protein-protein networks, and multi-omics data including differentially expressed genes in SCZ and controls, distance from genes to the index single-nucleotide polymorphisms (SNPs), and de novo mutations. The application of rGAT-omics to the 108 loci identified by a recent GWAS study of SCZ predicted 103 high-risk genes (HRGs) that explain a high proportion of SCZ heritability (Enrichment = 43.44 and [Formula: see text]). HRGs were shown to be significantly ([Formula: see text]) enriched in genes associated with neurological activities, and more likely to be expressed in brain tissues and SCZ-associated cell types than background genes. The predicted HRGs included 16 novel genes not present in any existing databases of SCZ-associated genes or previously predicted to be SCZ risk genes by any other method. More importantly, 13 of these 16 genes were not the nearest to the index SNP markers, and them would have been difficult to identify as risk genes by conventional approaches while ten out of the 16 genes are associated with neurological functions that make them prime candidates for pathological involvement in SCZ. Therefore, rGAT-omics has revealed novel insights into the molecular mechanisms underlying SCZ and could provide potential clues to future therapies.
精神分裂症 (SCZ) 是一种多基因疾病,遗传率接近 80%。迄今为止,通过全基因组关联研究 (GWAS) 已经确定了 100 多个与 SCZ 相关的基因座。然而,与这些基因座相关的风险基因通常仍然未知。我们提出了一种新的风险基因预测器 rGAT-omics,它通过将基因本体、组织特异性蛋白质-蛋白质网络以及多组学数据(包括 SCZ 和对照中的差异表达基因、基因与索引单核苷酸多态性 (SNP) 的距离以及从头突变)整合到贝叶斯框架中,通过结合 Hotelling 和 Box-Cox 变换来实现。贝叶斯框架是使用基因本体、组织特异性蛋白质-蛋白质网络以及多组学数据(包括 SCZ 和对照中的差异表达基因、基因与索引单核苷酸多态性 (SNP) 的距离以及从头突变)构建的。rGAT-omics 应用于最近对 SCZ 的 GWAS 研究确定的 108 个基因座,预测了 103 个高风险基因(HRG),这些基因解释了 SCZ 遗传率的很大一部分(富集度=43.44 和 [公式:见文本])。HRG 与与神经活动相关的基因显著富集([公式:见文本]),并且比背景基因更有可能在脑组织和与 SCZ 相关的细胞类型中表达。预测的 HRG 包括 16 个新基因,这些基因不存在于任何现有的 SCZ 相关基因数据库中,也没有任何其他方法以前预测为 SCZ 风险基因。更重要的是,这 16 个基因中的 13 个不是最接近索引 SNP 标记的,而通过传统方法很难将它们识别为风险基因,而这 16 个基因中的 10 个与神经功能相关,这使它们成为精神分裂症病理参与的主要候选者。因此,rGAT-omics 揭示了 SCZ 分子机制的新见解,并为未来的治疗方法提供了潜在的线索。