Suppr超能文献

DPP9 隔离 NLRP1 的 C 末端以抑制炎症小体的激活。

DPP9 sequesters the C terminus of NLRP1 to repress inflammasome activation.

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.

Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.

出版信息

Nature. 2021 Apr;592(7856):778-783. doi: 10.1038/s41586-021-03350-4. Epub 2021 Mar 17.

Abstract

Nucleotide-binding domain and leucine-rich repeat pyrin-domain containing protein 1 (NLRP1) is an inflammasome sensor that mediates the activation of caspase-1 to induce cytokine maturation and pyroptosis. Gain-of-function mutations of NLRP1 cause severe inflammatory diseases of the skin. NLRP1 contains a function-to-find domain that auto-proteolyses into noncovalently associated subdomains, and proteasomal degradation of the repressive N-terminal fragment of NLRP1 releases its inflammatory C-terminal fragment (NLRP1 CT). Cytosolic dipeptidyl peptidases 8 and 9 (hereafter, DPP8/DPP9) both interact with NLRP1, and small-molecule inhibitors of DPP8/DPP9 activate NLRP1 by mechanisms that are currently unclear. Here we report cryo-electron microscopy structures of the human NLRP1-DPP9 complex alone and with Val-boroPro (VbP), an inhibitor of DPP8/DPP9. The structures reveal a ternary complex that comprises DPP9, full-length NLRP1 and the NLRPT CT. The binding of the NLRP1 CT to DPP9 requires full-length NLRP1, which suggests that NLRP1 activation is regulated by the ratio of NLRP1 CT to full-length NLRP1. Activation of the inflammasome by ectopic expression of the NLRP1 CT is consistently rescued by co-expression of autoproteolysis-deficient full-length NLRP1. The N terminus of the NLRP1 CT inserts into the DPP9 active site, and VbP disrupts this interaction. Thus, VbP weakens the NLRP1-DPP9 interaction and accelerates degradation of the N-terminal fragment to induce inflammasome activation. Overall, these data demonstrate that DPP9 quenches low levels of NLRP1 CT and thus serves as a checkpoint for activation of the NLRP1 inflammasome.

摘要

核苷酸结合域和富含亮氨酸重复的吡喃结构域蛋白 1(NLRP1)是一种炎症小体传感器,可介导半胱天冬酶-1 的激活,诱导细胞因子成熟和细胞焦亡。NLRP1 的功能获得性突变可引起严重的皮肤炎症性疾病。NLRP1 含有一个功能发现结构域,该结构域可自动蛋白水解成非共价相关的亚结构域,蛋白酶体降解 NLRP1 的抑制性 N 端片段可释放其炎症性 C 端片段(NLRP1 CT)。细胞质二肽基肽酶 8 和 9(以下简称 DPP8/DPP9)均与 NLRP1 相互作用,DPP8/DPP9 的小分子抑制剂通过目前尚不清楚的机制激活 NLRP1。在这里,我们报告了单独的人 NLRP1-DPP9 复合物以及与 Val-boroPro(VbP)(DPP8/DPP9 的抑制剂)的冷冻电子显微镜结构。这些结构揭示了一个三元复合物,包含 DPP9、全长 NLRP1 和 NLRPT CT。NLRP1 CT 与 DPP9 的结合需要全长 NLRP1,这表明 NLRP1 的激活受到 NLRP1 CT 与全长 NLRP1 之比的调节。通过异位表达 NLRP1 CT 激活炎症小体,始终可以通过共表达缺乏自蛋白水解的全长 NLRP1 来挽救。NLRP1 CT 的 N 端插入 DPP9 的活性位点,而 VbP 破坏了这种相互作用。因此,VbP 削弱了 NLRP1-DPP9 相互作用并加速了 N 端片段的降解,从而诱导炎症小体激活。总体而言,这些数据表明 DPP9 抑制低水平的 NLRP1 CT,从而充当 NLRP1 炎症小体激活的检查点。

相似文献

1
DPP9 sequesters the C terminus of NLRP1 to repress inflammasome activation.
Nature. 2021 Apr;592(7856):778-783. doi: 10.1038/s41586-021-03350-4. Epub 2021 Mar 17.
2
Dipeptidyl peptidase 9 sets a threshold for CARD8 inflammasome formation by sequestering its active C-terminal fragment.
Immunity. 2021 Jul 13;54(7):1392-1404.e10. doi: 10.1016/j.immuni.2021.04.024. Epub 2021 May 20.
4
Structural and biochemical mechanisms of NLRP1 inhibition by DPP9.
Nature. 2021 Apr;592(7856):773-777. doi: 10.1038/s41586-021-03320-w. Epub 2021 Mar 17.
6
DPP9's Enzymatic Activity and Not Its Binding to CARD8 Inhibits Inflammasome Activation.
ACS Chem Biol. 2019 Nov 15;14(11):2424-2429. doi: 10.1021/acschembio.9b00462. Epub 2019 Sep 20.
7
Activation of the CARD8 Inflammasome Requires a Disordered Region.
Cell Rep. 2020 Oct 13;33(2):108264. doi: 10.1016/j.celrep.2020.108264.
8
DPP8/DPP9 inhibition elicits canonical Nlrp1b inflammasome hallmarks in murine macrophages.
Life Sci Alliance. 2019 Feb 4;2(1). doi: 10.26508/lsa.201900313. Print 2019 Feb.
9
KSHV-encoded ORF45 activates human NLRP1 inflammasome.
Nat Immunol. 2022 Jun;23(6):916-926. doi: 10.1038/s41590-022-01199-x. Epub 2022 May 26.
10
DPP9 deficiency: An inflammasomopathy that can be rescued by lowering NLRP1/IL-1 signaling.
Sci Immunol. 2022 Sep 16;7(75):eabi4611. doi: 10.1126/sciimmunol.abi4611.

引用本文的文献

1
Pattern Recognition by NOD-Like Receptors.
Adv Exp Med Biol. 2025;1476:83-105. doi: 10.1007/978-3-031-85340-1_4.
2
The non-structural protein of SFTSV activates NLRP1 and CARD8 inflammasome through disrupting the DPP9-mediated ternary complex.
PLoS Pathog. 2025 Jul 3;21(7):e1013258. doi: 10.1371/journal.ppat.1013258. eCollection 2025 Jul.
3
A large-scale curated and filterable dataset for cryo-EM foundation model pre-training.
Sci Data. 2025 Jun 7;12(1):960. doi: 10.1038/s41597-025-05179-2.
4
A fluorescent sensor for real-time monitoring of DPP8/9 reveals crucial roles in immunity and cancer.
Life Sci Alliance. 2025 May 12;8(8). doi: 10.26508/lsa.202403076. Print 2025 Aug.
6
Sulphostin-inspired N-phosphonopiperidones as selective covalent DPP8 and DPP9 inhibitors.
Nat Commun. 2025 Apr 3;16(1):3208. doi: 10.1038/s41467-025-58493-z.
7
Role of inflammasomes in cancer immunity: mechanisms and therapeutic potential.
J Exp Clin Cancer Res. 2025 Mar 29;44(1):109. doi: 10.1186/s13046-025-03366-y.
8
Dipeptidyl peptidase DPF-3 is a gatekeeper of microRNA Argonaute compensation in animals.
Nat Commun. 2025 Mar 20;16(1):2738. doi: 10.1038/s41467-025-58141-6.
9
New insights into the noncanonical inflammasome point to caspase-4 as a druggable target.
Nat Rev Immunol. 2025 Mar 5. doi: 10.1038/s41577-025-01142-9.

本文引用的文献

1
Mechanism of filament formation in UPA-promoted CARD8 and NLRP1 inflammasomes.
Nat Commun. 2021 Jan 8;12(1):189. doi: 10.1038/s41467-020-20320-y.
2
Structural basis for distinct inflammasome complex assembly by human NLRP1 and CARD8.
Nat Commun. 2021 Jan 8;12(1):188. doi: 10.1038/s41467-020-20319-5.
3
Activation of the CARD8 Inflammasome Requires a Disordered Region.
Cell Rep. 2020 Oct 13;33(2):108264. doi: 10.1016/j.celrep.2020.108264.
4
The NLRP1 and CARD8 inflammasomes.
Immunol Rev. 2020 Sep;297(1):13-25. doi: 10.1111/imr.12884. Epub 2020 Jun 19.
5
GemSpot: A Pipeline for Robust Modeling of Ligands into Cryo-EM Maps.
Structure. 2020 Jun 2;28(6):707-716.e3. doi: 10.1016/j.str.2020.04.018. Epub 2020 May 14.
6
Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in -3.1.
IUCrJ. 2020 Feb 11;7(Pt 2):253-267. doi: 10.1107/S2052252520000081. eCollection 2020 Mar 1.
7
High-density chemical cross-linking for modeling protein interactions.
Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):93-102. doi: 10.1073/pnas.1902931116. Epub 2019 Dec 17.
8
DPP9's Enzymatic Activity and Not Its Binding to CARD8 Inhibits Inflammasome Activation.
ACS Chem Biol. 2019 Nov 15;14(11):2424-2429. doi: 10.1021/acschembio.9b00462. Epub 2019 Sep 20.
9
DPP8/9 inhibitors are universal activators of functional NLRP1 alleles.
Cell Death Dis. 2019 Aug 5;10(8):587. doi: 10.1038/s41419-019-1817-5.
10
SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM.
Commun Biol. 2019 Jun 19;2:218. doi: 10.1038/s42003-019-0437-z. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验