Zhang Yiqian, Hamada Michiaki
Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, Japan.
Front Genet. 2021 Mar 1;12:625797. doi: 10.3389/fgene.2021.625797. eCollection 2021.
N6-methyladenosine (mA) is an abundant modification on mRNA that plays an important role in regulating essential RNA activities. Several wet lab studies have identified some RNA binding proteins (RBPs) that are related to mA's regulation. The objective of this study was to identify potential mA-associated RBPs using an integrative computational framework. The framework was composed of an enrichment analysis and a classification model. Utilizing RBPs' binding data, we analyzed reproducible mA regions from independent studies using this framework. The enrichment analysis identified known mA-associated RBPs including YTH domain-containing proteins; it also identified RBM3 as a potential mA-associated RBP for mouse. Furthermore, a significant correlation for the identified mA-associated RBPs is observed at the protein expression level rather than the gene expression level. On the other hand, a Random Forest classification model was built for the reproducible mA regions using RBPs' binding data. The RBP-based predictor demonstrated not only competitive performance when compared with sequence-based predictions but also reflected mA's action of repelling against RBPs, which suggested that our framework can infer interaction between mA and mA-associated RBPs beyond sequence level when utilizing RBPs' binding data. In conclusion, we designed an integrative computational framework for the identification of known and potential mA-associated RBPs. We hope the analysis will provide more insights on the studies of mA and RNA modifications.
N6-甲基腺苷(mA)是mRNA上一种丰富的修饰,在调节重要的RNA活性中发挥重要作用。一些湿实验室研究已经鉴定出一些与mA调节相关的RNA结合蛋白(RBP)。本研究的目的是使用综合计算框架鉴定潜在的与mA相关的RBP。该框架由富集分析和分类模型组成。利用RBP的结合数据,我们使用这个框架分析了来自独立研究的可重复的mA区域。富集分析鉴定出了已知的与mA相关的RBP,包括含YTH结构域的蛋白;它还将RBM3鉴定为小鼠潜在的与mA相关的RBP。此外,在蛋白质表达水平而非基因表达水平上观察到了所鉴定的与mA相关的RBP之间的显著相关性。另一方面,使用RBP的结合数据为可重复的mA区域构建了随机森林分类模型。基于RBP的预测器不仅在与基于序列的预测相比时表现出有竞争力的性能,而且还反映了mA对RBP的排斥作用,这表明我们的框架在利用RBP的结合数据时可以在序列水平之外推断mA与mA相关的RBP之间的相互作用。总之,我们设计了一个综合计算框架来鉴定已知的和潜在的与mA相关的RBP。我们希望该分析将为mA和RNA修饰的研究提供更多见解。