Suppr超能文献

用于区分耐环丙沙星和敏感鼠伤寒沙门氏菌的基于噬菌体的检测方法的开发。

Development of phage-based assay to differentiate ciprofloxacin resistant and sensitive Typhimurium.

作者信息

Laure Nana Nguefang, Ahn Juhee

机构信息

Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea.

出版信息

Food Sci Biotechnol. 2021 Jan 6;30(2):315-320. doi: 10.1007/s10068-020-00858-9. eCollection 2021 Feb.

Abstract

This study was designed to evaluate the possibility of using phage-amplification assay for discriminating between antibiotic-sensitive and antibiotic-resistant Typhimurium. The characteristics of phage PBST32 were determined by adsorption rate, one-step growth curve, and lytic activity. The ability of phage-based method to detect Typhimurium ATCC 19585 (ST) was determined in single culture and bacterial mixtures of . Typhimurium ATCC 19585 (ST), , and . The adsorption rates of PBST32 were 95% and 93% against ST and ST after 20 min, respectively. The PBST32 showed latent period of 20 min and average burst size of 90 against ST and ST. The ST was selectively detected in mixtures of . , . , and ST by phage amplification assay. These results provide useful information for designing phage amplification method that can differentially detect antibiotic-resistant pathogens.

摘要

本研究旨在评估使用噬菌体扩增试验区分抗生素敏感型和耐药型鼠伤寒沙门氏菌的可能性。通过吸附率、一步生长曲线和裂解活性来确定噬菌体PBST32的特性。在鼠伤寒沙门氏菌ATCC 19585(ST)的单培养物以及鼠伤寒沙门氏菌ATCC 19585(ST)、[此处原文缺失部分内容]和[此处原文缺失部分内容]的细菌混合物中,测定基于噬菌体的方法检测鼠伤寒沙门氏菌ATCC 19585(ST)的能力。20分钟后,PBST32对ST和ST的吸附率分别为95%和93%。PBST32对ST和ST的潜伏期为20分钟,平均裂解量为90。通过噬菌体扩增试验在[此处原文缺失部分内容]、[此处原文缺失部分内容]和ST的混合物中选择性地检测到了ST。这些结果为设计能够差异检测耐药病原体的噬菌体扩增方法提供了有用信息。

相似文献

1
Development of phage-based assay to differentiate ciprofloxacin resistant and sensitive Typhimurium.
Food Sci Biotechnol. 2021 Jan 6;30(2):315-320. doi: 10.1007/s10068-020-00858-9. eCollection 2021 Feb.
3
Assessment of the potential of phage-antibiotic synergy to induce collateral sensitivity in Salmonella Typhimurium.
Microb Pathog. 2023 Jul;180:106134. doi: 10.1016/j.micpath.2023.106134. Epub 2023 May 5.
4
Assessment of altered binding specificity of bacteriophage for ciprofloxacin-induced antibiotic-resistant Salmonella Typhimurium.
Arch Microbiol. 2016 Aug;198(6):521-9. doi: 10.1007/s00203-016-1210-z. Epub 2016 Mar 21.
5
Assessment of cross-resistance potential to serial antibiotic treatments in antibiotic-resistant Salmonella Typhimurium.
Microb Pathog. 2020 Nov;148:104478. doi: 10.1016/j.micpath.2020.104478. Epub 2020 Sep 8.
6
Effectiveness of Antibiotic Combination Treatments to Control Heteroresistant Typhimurium.
Microb Drug Resist. 2021 Apr;27(4):441-449. doi: 10.1089/mdr.2020.0027. Epub 2020 Apr 7.
7
Assessment of bacteriophage-encoded endolysin as a potent antimicrobial agent against antibiotic-resistant Salmonella Typhimurium.
Microb Pathog. 2022 Jul;168:105576. doi: 10.1016/j.micpath.2022.105576. Epub 2022 May 11.
9
Comparison of antibiotic resistance phenotypes in laboratory strains and clinical isolates of , Typhimurium, and .
Food Sci Biotechnol. 2017 Aug 16;26(6):1773-1779. doi: 10.1007/s10068-017-0191-2. eCollection 2017.
10
Evaluation of lytic bacteriophages for control of multidrug-resistant Salmonella Typhimurium.
Ann Clin Microbiol Antimicrob. 2017 Sep 22;16(1):66. doi: 10.1186/s12941-017-0237-6.

本文引用的文献

1
Antibiotics: past, present and future.
Curr Opin Microbiol. 2019 Oct;51:72-80. doi: 10.1016/j.mib.2019.10.008. Epub 2019 Nov 13.
2
Emergence of new variants of antibiotic resistance genomic islands among multidrug-resistant Salmonella enterica in poultry.
Environ Microbiol. 2020 Jan;22(1):413-432. doi: 10.1111/1462-2920.14858. Epub 2019 Nov 25.
4
Phages for biocontrol in foods: What opportunities for Salmonella sp. control along the dairy food chain?
Food Microbiol. 2019 Apr;78:89-98. doi: 10.1016/j.fm.2018.10.009. Epub 2018 Oct 22.
5
Phenotypic and Genotypic Eligible Methods for Typhimurium Source Tracking.
Front Microbiol. 2017 Dec 22;8:2587. doi: 10.3389/fmicb.2017.02587. eCollection 2017.
6
Current and emerging techniques for antibiotic susceptibility tests.
Theranostics. 2017 Apr 10;7(7):1795-1805. doi: 10.7150/thno.19217. eCollection 2017.
7
Bioengineering bacteriophages to enhance the sensitivity of phage amplification-based paper fluidic detection of bacteria.
Biosens Bioelectron. 2016 Aug 15;82:14-9. doi: 10.1016/j.bios.2016.03.047. Epub 2016 Mar 22.
8
The negative impact of antibiotic resistance.
Clin Microbiol Infect. 2016 May;22(5):416-22. doi: 10.1016/j.cmi.2015.12.002. Epub 2015 Dec 17.
10
Bacteriophage amplification assay for detection of Listeria spp. using virucidal laser treatment.
Braz J Microbiol. 2012 Jul;43(3):1128-36. doi: 10.1590/S1517-838220120003000040. Epub 2012 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验