Suppr超能文献

在整群随机试验中,当整群水平变量的设定错误时,评估协变量约束随机化(CCR)技术的性能。

Evaluating performance of covariate-constrained randomization (CCR) techniques under misspecification of cluster-level variables in cluster-randomized trials.

作者信息

Organ Madeleine, Tandon S Darius, Diebold Alicia, Johnson Jessica K, Yeh Chen, Ciolino Jody D

机构信息

Department of Preventive Medicine, Division of Biostatistics, Feinberg School of Medicine, USA.

Department of Preventive Medicine, Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

出版信息

Contemp Clin Trials Commun. 2021 Feb 16;22:100754. doi: 10.1016/j.conctc.2021.100754. eCollection 2021 Jun.

Abstract

Covariate constrained randomization (CCR) is a method of controlling imbalance in important baseline covariates in cluster-randomized trials (CRT). We use simulated CRTs to investigate the performance (control of imbalance) of CCR relative to simple randomization (SR) under conditions of misspecification of the cluster-level variable used in the CCR algorithm. We use data from a Patient-Centered Outcomes Research Institute (PCORI)-funded CRT evaluating the Mothers and Babies (MB) intervention (AD-1507-31,473). CCR methodology was used in the MB study to control imbalance in, among other baseline variables, the percent minority (i.e., non-White) participants at each study site. Simulation schemes explored variation in degree of misspecification in the baseline covariate of interest, and include correct report, observed misspecification, and a range of simulated misspecification for intervals within and beyond that observed in the MB study. We also consider three within-site sample size scenarios: that observed in the MB study, small (mean 10) and large (mean 50). Simulations at every level of baseline covariate misspecification suggest that use of the CCR strategy provides between-arm imbalance that is simultaneously lower and less variable, on average, than that produced from the SR strategy. We find that the gains to using CCR over SR are nearly twice as high with accurate reporting (Δ = -5.33) compared to the observed study-level misspecification (Δ = -3.03). Although CCR still outperforms SR as the level of misspecification increases, the gains to using CCR over SR decrease; thus, every effort should still be made to obtain high-quality baseline data.

摘要

协变量约束随机化(CCR)是一种在整群随机试验(CRT)中控制重要基线协变量不平衡的方法。我们使用模拟的CRT来研究在CCR算法中使用的整群水平变量误设的情况下,CCR相对于简单随机化(SR)的性能(不平衡控制)。我们使用了来自患者为中心的结果研究所(PCORI)资助的一项CRT的数据,该试验评估母婴(MB)干预措施(AD - 1507 - 31,473)。MB研究中使用了CCR方法来控制各研究地点少数族裔(即非白人)参与者百分比等基线变量的不平衡。模拟方案探讨了感兴趣的基线协变量误设程度的变化,包括正确报告、观察到的误设,以及在MB研究中观察到的区间内外的一系列模拟误设。我们还考虑了三种站点内样本量情况:MB研究中观察到的情况、小样本量(平均10)和大样本量(平均50)。在基线协变量误设的每个水平上进行的模拟表明,使用CCR策略平均而言在组间不平衡方面比SR策略产生的不平衡更低且变化更小。我们发现,与观察到的研究水平误设(Δ = -3.03)相比,在准确报告的情况下使用CCR相对于SR的收益几乎高出两倍(Δ = -5.33)。尽管随着误设水平的增加CCR仍优于SR,但使用CCR相对于SR的收益会降低;因此,仍应尽一切努力获取高质量的基线数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65c/7941091/d507a7f406ce/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验