Suppr超能文献

提高预测模型判别准确性的视觉传达:概率阈值图。

Improving visual communication of discriminative accuracy for predictive models: the probability threshold plot.

作者信息

Johnston Stephen S, Fortin Stephen, Kalsekar Iftekhar, Reps Jenna, Coplan Paul

机构信息

Epidemiology, Medical Devices, Johnson & Johnson, New Brunswick, New Jersey, USA.

Epidemiology; Janssen Research and Development, Titusville, New Jersey, USA.

出版信息

JAMIA Open. 2021 Mar 12;4(1):ooab017. doi: 10.1093/jamiaopen/ooab017. eCollection 2021 Jan.

Abstract

OBJECTIVES

To propose a visual display-the probability threshold plot (PTP)-that transparently communicates a predictive models' measures of discriminative accuracy along the range of model-based predicted probabilities ().

MATERIALS AND METHODS

We illustrate the PTP by replicating a previously-published and validated machine learning-based model to predict antihyperglycemic medication cessation within 1-2 years following metabolic surgery. The visual characteristics of the PTPs for each model were compared to receiver operating characteristic (ROC) curves.

RESULTS

A total of 18 887 patients were included for analysis. Whereas during testing each predictive model had nearly identical ROC curves and corresponding area under the curve values (0.672 and 0.673), the visual characteristics of the PTPs revealed substantive between-model differences in sensitivity, specificity, PPV, and NPV across the range of .

DISCUSSION AND CONCLUSIONS

The PTP provides improved visual display of a predictive model's discriminative accuracy, which can enhance the practical application of predictive models for medical decision making.

摘要

目的

提出一种可视化展示——概率阈值图(PTP),该图能直观地传达预测模型在基于模型预测概率范围内的判别准确性度量。

材料与方法

我们通过复制一个先前发表并经验证的基于机器学习的模型来说明PTP,该模型用于预测代谢手术后1 - 2年内抗高血糖药物停用情况。将每个模型的PTP的视觉特征与受试者工作特征(ROC)曲线进行比较。

结果

共纳入18887例患者进行分析。虽然在测试期间每个预测模型具有几乎相同的ROC曲线和相应的曲线下面积值(0.672和0.673),但PTP的视觉特征显示在整个范围内模型间在敏感性、特异性、阳性预测值和阴性预测值方面存在实质性差异。

讨论与结论

PTP能更好地直观展示预测模型的判别准确性,这可增强预测模型在医疗决策中的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8b5/7952226/450a8ca9554a/ooab017f1.jpg

相似文献

1
Improving visual communication of discriminative accuracy for predictive models: the probability threshold plot.
JAMIA Open. 2021 Mar 12;4(1):ooab017. doi: 10.1093/jamiaopen/ooab017. eCollection 2021 Jan.
3
A discussion of calibration techniques for evaluating binary and categorical predictive models.
Prev Vet Med. 2018 Jan 1;149:107-114. doi: 10.1016/j.prevetmed.2017.11.018. Epub 2017 Nov 24.
6
Machine learning-based preoperative predictive analytics for lumbar spinal stenosis.
Neurosurg Focus. 2019 May 1;46(5):E5. doi: 10.3171/2019.2.FOCUS18723.
8
Machine learning applications for the prediction of surgical site infection in neurological operations.
Neurosurg Focus. 2019 Aug 1;47(2):E7. doi: 10.3171/2019.5.FOCUS19241.
9
The use of hippocampal volumetric measurements to improve diagnostic accuracy in pediatric patients with mesial temporal sclerosis.
J Neurosurg Pediatr. 2017 Jun;19(6):720-728. doi: 10.3171/2016.12.PEDS16335. Epub 2017 Mar 24.
10
A machine learning approach to predict early outcomes after pituitary adenoma surgery.
Neurosurg Focus. 2018 Nov 1;45(5):E8. doi: 10.3171/2018.8.FOCUS18268.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验