Suppr超能文献

用于转基因偏好测试的实例分割法估算野生动物对玉米穗的消耗量

Instance Segmentation to Estimate Consumption of Corn Ears by Wild Animals for GMO Preference Tests.

作者信息

Adke Shrinidhi, Haro von Mogel Karl, Jiang Yu, Li Changying

机构信息

Institute of Artificial Intelligence, University of Georgia, Athens, GA, United States.

Bio-Sensing and Instrumentation Laboratory, College of Engineering, University of Georgia, Athens, GA, United States.

出版信息

Front Artif Intell. 2021 Jan 29;3:593622. doi: 10.3389/frai.2020.593622. eCollection 2020.

Abstract

The Genetically Modified (GMO) Corn Experiment was performed to test the hypothesis that wild animals prefer Non-GMO corn and avoid eating GMO corn, which resulted in the collection of complex image data of consumed corn ears. This study develops a deep learning-based image processing pipeline that aims to estimate the consumption of corn by identifying corn and its bare cob from these images, which will aid in testing the hypothesis in the GMO Corn Experiment. Ablation uses mask regional convolutional neural network (Mask R-CNN) for instance segmentation. Based on image data annotation, two approaches for segmentation were discussed: identifying whole corn ears and bare cob parts with and without corn kernels. The Mask R-CNN model was trained for both approaches and segmentation results were compared. Out of the two, the latter approach, i.e., without the kernel, was chosen to estimate the corn consumption because of its superior segmentation performance and estimation accuracy. Ablation experiments were performed with the latter approach to obtain the best model with the available data. The estimation results of these models were included and compared with manually labeled test data with = 0.99 which showed that use of the Mask R-CNN model to estimate corn consumption provides highly accurate results, thus, allowing it to be used further on all collected data and help test the hypothesis of the GMO Corn Experiment. These approaches may also be applied to other plant phenotyping tasks (e.g., yield estimation and plant stress quantification) that require instance segmentation.

摘要

进行转基因(GMO)玉米实验是为了验证野生动物更喜欢非转基因玉米并避免食用转基因玉米这一假设,实验过程中收集了被食用玉米穗的复杂图像数据。本研究开发了一种基于深度学习的图像处理流程,旨在通过从这些图像中识别玉米及其裸穗轴来估计玉米的消耗量,这将有助于验证转基因玉米实验中的假设。消融实验使用掩码区域卷积神经网络(Mask R-CNN)进行实例分割。基于图像数据标注,讨论了两种分割方法:识别有玉米粒和没有玉米粒的整个玉米穗及裸穗轴部分。对Mask R-CNN模型进行了这两种方法的训练,并比较了分割结果。在这两种方法中,由于后一种方法(即没有玉米粒的方法)具有更优的分割性能和估计精度,因此被选择用于估计玉米消耗量。采用后一种方法进行消融实验,以利用现有数据获得最佳模型。将这些模型的估计结果纳入并与手动标注的测试数据进行比较,结果显示相关系数(R^2 = 0.99),这表明使用Mask R-CNN模型估计玉米消耗量可提供高度准确的结果,因此可以进一步应用于所有收集的数据,并有助于验证转基因玉米实验的假设。这些方法也可应用于其他需要实例分割的植物表型分析任务(例如产量估计和植物胁迫量化)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d60f/7941411/332a598417dd/frai-03-593622-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验