Suppr超能文献

基于距离图深度回归的组织病理学图像细胞核分割。

Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map.

出版信息

IEEE Trans Med Imaging. 2019 Feb;38(2):448-459. doi: 10.1109/TMI.2018.2865709.

Abstract

The advent of digital pathology provides us with the challenging opportunity to automatically analyze whole slides of diseased tissue in order to derive quantitative profiles that can be used for diagnosis and prognosis tasks. In particular, for the development of interpretable models, the detection and segmentation of cell nuclei is of the utmost importance. In this paper, we describe a new method to automatically segment nuclei from Haematoxylin and Eosin (H&E) stained histopathology data with fully convolutional networks. In particular, we address the problem of segmenting touching nuclei by formulating the segmentation problem as a regression task of the distance map. We demonstrate superior performance of this approach as compared to other approaches using Convolutional Neural Networks.

摘要

数字病理学的出现为我们提供了一个具有挑战性的机会,可以自动分析患病组织的全切片,以得出可用于诊断和预后任务的定量特征。特别是,对于可解释模型的开发,细胞核的检测和分割至关重要。在本文中,我们描述了一种使用全卷积网络自动分割苏木精和伊红(H&E)染色组织病理学数据中细胞核的新方法。具体来说,我们通过将分割问题表述为距离图的回归任务来解决分割接触细胞核的问题。与使用卷积神经网络的其他方法相比,我们证明了这种方法的优越性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验