Suppr超能文献

钠化MoS活性位点在室温钠硫电池中对高效硫氧化还原反应的可调电催化行为

Tunable Electrocatalytic Behavior of Sodiated MoS Active Sites toward Efficient Sulfur Redox Reactions in Room-Temperature Na-S Batteries.

作者信息

Wang Yanxia, Lai Yangyang, Chu Jun, Yan Zichao, Wang Yun-Xiao, Chou Shu-Lei, Liu Hua-Kun, Dou Shi Xue, Ai Xinping, Yang Hanxi, Cao Yuliang

机构信息

College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China.

Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales, 2500, Australia.

出版信息

Adv Mater. 2021 Apr;33(16):e2100229. doi: 10.1002/adma.202100229. Epub 2021 Mar 17.

Abstract

Room-temperature (RT) sodium-sulfur (Na-S) batteries hold great promise for large-scale energy storage due to the advantages of high energy density, low cost, and resource abundance. The research progress on RT Na-S batteries, however, has been greatly hindered by the sluggish kinetics of the sulfur redox reactions. Herein, an elaborate multifunctional architecture, consisting of N-doped carbon skeletons and tunable MoS sulfiphilic sites, is fabricated via a simple one-pot reaction followed by in situ sulfurization. Beyond the physical confinement and chemical binding of polarized N-doped carbonaceous microflowers, the MoS active sites play a key role in catalyzing polysulfide redox reactions, especially the conversion from long-chain Na S (4 ≤ n ≤ 8) to short-chain Na S and Na S. Significantly, the electrocatalytic activity of MoS can be tunable via adjusting the discharge depth. It is remarkable that the sodiated MoS exhibits much stronger binding energy and electrocatalytic behavior compared to MoS sites, effectively enhancing the formation of the final Na S product. Consequently, the S cathode achieves superior electrochemical performance in RT Na-S batteries, delivering a high capacity of 774.2 mAh g after 800 cycles at 0.2 A g , and an ultrahigh capacity retention with a capacity decay rate of only 0.0055% per cycle over 2800 cycles.

摘要

室温钠硫电池由于具有高能量密度、低成本和资源丰富等优点,在大规模储能方面具有巨大潜力。然而,硫氧化还原反应的缓慢动力学极大地阻碍了室温钠硫电池的研究进展。在此,通过简单的一锅法反应并随后进行原位硫化,制备了一种由氮掺杂碳骨架和可调的硫化钼亲硫位点组成的精细多功能结构。除了对极化的氮掺杂碳微花进行物理限制和化学结合外,硫化钼活性位点在催化多硫化物氧化还原反应中起着关键作用,特别是从长链Na₂Sₙ(4≤n≤8)向短链Na₂S和Na₂S₄的转化。值得注意的是,硫化钼的电催化活性可以通过调节放电深度来调控。与硫化钼位点相比,钠化硫化钼表现出更强的结合能和电催化行为,有效地促进了最终Na₂S产物的形成,这一点非常显著。因此,该硫正极在室温钠硫电池中实现了优异的电化学性能,在0.2 A g⁻¹的电流密度下循环800次后容量高达774.2 mAh g⁻¹,在2800次循环中具有仅0.0055%/循环的超低容量衰减率和超高的容量保持率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验