Suppr超能文献

利用在尼日利亚西南部片麻岩环境中开发的“GODL”方法(改良 GOD 模型)评估含水层脆弱性。

Assessment of aquifer vulnerability using a developed "GODL" method (modified GOD model) in a schist belt environ, Southwestern Nigeria.

机构信息

Department of Applied Geophysics, Federal University of Technology, Akure, Nigeria.

出版信息

Environ Monit Assess. 2021 Mar 17;193(4):199. doi: 10.1007/s10661-021-08960-z.

Abstract

Developing a predictive decision model for assessing the vulnerability of hidden groundwater reservoir formation to contamination risk via unavoidable anthropogenic activities is a key to managing water resources looming security crisis globally. This study explored multiple and robust methodologies including GIS, analytical hierarchy process (AHP)-based data mining, statistical and geophysical techniques for developing a novel "GODL" vulnerability method: a modified GOD model to ameliorate these challenges. The input for the modeling was based on the 65 located depth sounding geophysical data occupied in a schist belt environ, Southwestern Nigeria. From the geophysical data interpreted results, four factors, namely, groundwater hydraulic confinement (G), aquifer overlying strata (O), depth to water table (D), and longitudinal conductance (L), regarded as aquifer vulnerability causative factors (AVCFs) were derived. The GIS-based produced AVCFs' themes were synthesized by employing the conventional GOD and the AHP-driven GODL algorithms. Based on these algorithms applied results, the GOD-based aquifer vulnerability prediction zone map and GODL-based aquifer vulnerability prediction zone (AVPZ) map were produced in GIS environment. The produced AVPZ maps were validated by applying the statistical model evaluation to the water chemistry correlation results. The validation result exhibits 70% prediction accuracy for the developed GODL model compared with 66% for the GOD model. The GODL model demonstrated better performance than the GOD model. The AVPZ maps produced in this study can be used for precise decision-making process in environmental planning and groundwater management.

摘要

开发一种预测决策模型,通过不可避免的人为活动评估隐藏地下水库形成对污染风险的脆弱性,是管理全球水资源安全危机的关键。本研究探索了多种稳健的方法,包括 GIS、基于层次分析法 (AHP) 的数据挖掘、统计和地球物理技术,以开发一种新的“GODL”脆弱性方法:一种改进的 GOD 模型,以改善这些挑战。建模的输入基于在尼日利亚西南部片岩带环境中占据的 65 个位置深度探测地球物理数据。从解释的地球物理数据结果中,得出了四个因素,即地下水水力约束 (G)、含水层上覆地层 (O)、水位深度 (D) 和纵向传导率 (L),它们被视为含水层脆弱性成因因素 (AVCFs)。基于 GIS 生成的 AVCFs 主题通过使用传统的 GOD 和 AHP 驱动的 GODL 算法进行综合。根据这些算法的应用结果,在 GIS 环境中生成了基于 GOD 的含水层脆弱性预测区图和基于 GODL 的含水层脆弱性预测区 (AVPZ) 图。通过应用统计模型评估对水化学相关性结果进行了验证。验证结果表明,与 GOD 模型的 66%相比,开发的 GODL 模型的预测准确率为 70%。GODL 模型的表现优于 GOD 模型。本研究中生成的 AVPZ 图可用于环境规划和地下水管理中的精确决策过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验