Singh Nem, Yadav Dolly, Mulay Sandip V, Kim Jae Young, Park No-Joong, Baeg Jin-Ook
Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 305 600, Republic of Korea.
ACS Appl Mater Interfaces. 2021 Mar 31;13(12):14122-14131. doi: 10.1021/acsami.0c21117. Epub 2021 Mar 18.
Solar light-driven fuel production from carbon dioxide using organic photocatalysts is a promising technique for sustainable energy sources. Band gap engineering in sustainable organic photocatalysts for improving efficiency and fulfilling the requirements is highly anticipated. Here, we present a new strategy to engineer the band gap in covalent organic framework (COF) photocatalysts by varying the push-pull electronic effect. To implement this strategy, we have designed and synthesized four different COFs using a tripodal amine 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(([1,1'-biphenyl]-4-amine)) [Ttba] with 1,3,5-triformylbenzene (), 2,4,6-triformylphloroglucinol (), 2,4,6-triformylphenol (), and 2,4,6-triformylresorcinol (). On varying the number of hydroxyl units in the aldehyde precursor, the resulting COFs allow the fine-tuning of their band gap and band edge positions and result in different morphologies with varying surface areas. The enhanced optical properties of and with very suitable band gaps of 2.02 and 1.95 eV, respectively, enable them to demonstrate a high-efficiency photobiocatalytic system for NADH photoregeneration and enhanced visible light-driven formic acid production at a rate of 226.3 μmol g in 90 min. The triazine core enables efficient charge separation, while the hydroxyl groups induce an electronic push-pull effect, regulating their photocatalytic efficiency. The results demonstrated the morphology-guided enhanced surface area and dual keto-enol tautomerism-induced push-pull effect in asymmetrical charge distribution as key features in the fine-tuning of the photocatalysts.
利用有机光催化剂通过太阳光驱动将二氧化碳转化为燃料是一种很有前景的可持续能源技术。人们高度期待在可持续有机光催化剂中进行带隙工程以提高效率并满足相关要求。在此,我们提出了一种通过改变推挽电子效应来设计共价有机框架(COF)光催化剂带隙的新策略。为了实施这一策略,我们使用三胺4,4',4″-(1,3,5-三嗪-2,4,6-三基)三(([1,1'-联苯]-4-胺)) [Ttba] 与1,3,5-三甲酰基苯、2,4,6-三羟基间苯三酚、2,4,6-三羟基苯酚和2,4,6-三羟基间苯二酚设计并合成了四种不同的COF。通过改变醛前体中羟基单元的数量,所得的COF能够对其带隙和带边位置进行微调,并产生具有不同表面积的不同形态。具有非常合适的带隙(分别为2.02和1.95 eV)的[具体物质1]和[具体物质2]增强的光学性质,使它们能够展示出用于NADH光再生的高效光生物催化系统,并在90分钟内以226.3 μmol g的速率增强可见光驱动的甲酸生成。三嗪核心实现了有效的电荷分离,而羟基诱导了电子推挽效应,调节了它们的光催化效率。结果表明,形态引导的表面积增加以及不对称电荷分布中双重酮-烯醇互变异构诱导的推挽效应是光催化剂微调的关键特征。