Suppr超能文献

聚(七嗪酰亚胺)二维材料钾离子交换盐催化的光催化水分解反应

Photocatalytic Water Splitting Reaction Catalyzed by Ion-Exchanged Salts of Potassium Poly(heptazine imide) 2D Materials.

作者信息

Sahoo Sudhir K, Teixeira Ivo F, Naik Aakash, Heske Julian, Cruz Daniel, Antonietti Markus, Savateev Aleksandr, Kühne Thomas D

机构信息

Dynamics of Condensed Mater and Center for Sustainable System Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany.

Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany.

出版信息

J Phys Chem C Nanomater Interfaces. 2021 Jul 1;125(25):13749-13758. doi: 10.1021/acs.jpcc.1c03947. Epub 2021 Jun 16.

Abstract

Potassium poly (heptazine imide) (K-PHI), a crystalline two-dimensional carbon-nitride material, is an active photocatalyst for water splitting. The potassium ions in K-PHI can be exchanged with other ions to change the properties of the material and eventually to design the catalysts. We report here the electronic structures of several ion-exchanged salts of K-PHI (K, H, Au, Ru, and Mg) and their feasibility as water splitting photocatalysts, which were determined by density functional theory (DFT) calculations. The DFT results are complemented by experiments where the performances in the photocatalytic hydrogen evolution reaction (HER) were recorded. We show that due to its narrow band gap, Ru-PHI is not a suitable photocatalyst. The water oxidation potentials are straddled between the band edge potentials of H-PHI, Au-PHI, and Mg-PHI; thus, these are active photocatalysts for both the oxygen and hydrogen evolution reactions, whereas K-PHI is active only for the HER. The experimental data show that these are active HER photocatalysts, in agreement with the DFT results. Furthermore, Mg-PHI has shown remarkable performance in the HER, with a rate of 539 μmol/(h·g) and a quantum efficiency of 7.14% at 410 nm light irradiation, which could be due to activation of the water molecule upon adsorption, as predicted by our DFT calculations.

摘要

聚(七嗪酰亚胺)钾(K-PHI)是一种晶体二维碳氮化物材料,是用于水分解的活性光催化剂。K-PHI中的钾离子可与其他离子交换,以改变材料的性质,最终设计出催化剂。我们在此报告了几种K-PHI离子交换盐(K、H、Au、Ru和Mg)的电子结构及其作为水分解光催化剂的可行性,这些是通过密度泛函理论(DFT)计算确定的。DFT结果通过记录光催化析氢反应(HER)性能的实验得到补充。我们表明,由于其窄带隙,Ru-PHI不是合适的光催化剂。水氧化电位介于H-PHI、Au-PHI和Mg-PHI的带边电位之间;因此,这些是用于析氧和析氢反应的活性光催化剂,而K-PHI仅对HER有活性。实验数据表明,这些是活性HER光催化剂,与DFT结果一致。此外,Mg-PHI在HER中表现出显著性能,在410nm光照射下速率为539μmol/(h·g),量子效率为7.14%,这可能是由于如我们的DFT计算所预测的,水分子在吸附时被活化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705e/8256424/f6833e263748/jp1c03947_0002.jpg

相似文献

1
Photocatalytic Water Splitting Reaction Catalyzed by Ion-Exchanged Salts of Potassium Poly(heptazine imide) 2D Materials.
J Phys Chem C Nanomater Interfaces. 2021 Jul 1;125(25):13749-13758. doi: 10.1021/acs.jpcc.1c03947. Epub 2021 Jun 16.
2
Structural Insights into Poly(Heptazine Imides): A Light-Storing Carbon Nitride Material for Dark Photocatalysis.
Chem Mater. 2019 Sep 24;31(18):7478-7486. doi: 10.1021/acs.chemmater.9b02199. Epub 2019 Aug 12.
3
Optimizing the Optical Absorption of Poly(heptazine imide) by the n → π* Electron Transition for Improved Photocatalytic H Evolution.
ACS Appl Mater Interfaces. 2022 Sep 14;14(36):41131-41140. doi: 10.1021/acsami.2c12959. Epub 2022 Sep 1.
4
Mechanism of charge accumulation in potassium poly(heptazine imide).
Phys Chem Chem Phys. 2024 Jul 31;26(30):20585-20597. doi: 10.1039/d4cp02012j.
5
Potassium Poly(heptazine imide) Coupled with TiC MXene-Derived TiO as a Composite Photocatalyst for Efficient Pollutant Degradation.
ACS Omega. 2023 Mar 20;8(12):11397-11405. doi: 10.1021/acsomega.3c00150. eCollection 2023 Mar 28.
6
"The Easier the Better" Preparation of Efficient Photocatalysts-Metastable Poly(heptazine imide) Salts.
Adv Mater. 2017 Aug;29(32). doi: 10.1002/adma.201700555. Epub 2017 Jun 20.
7
In-situ one-step construction of poly(heptazine imide)/poly(triazine imide) heterojunctions for photocatalytic hydrogen evolution.
ChemSusChem. 2024 Jun 24;17(12):e202301849. doi: 10.1002/cssc.202301849. Epub 2024 Feb 22.
8
Heptazine-Based Ordered-Distorted Copolymers with Enhanced Visible-Light Absorption for Photocatalytic Hydrogen Production.
ChemSusChem. 2022 Dec 20;15(24):e202201616. doi: 10.1002/cssc.202201616. Epub 2022 Nov 14.
10
Stability and Crystallinity of Sodium Poly(Heptazine Imide) in Photocatalysis.
Angew Chem Int Ed Engl. 2023 Nov 20;62(47):e202314213. doi: 10.1002/anie.202314213. Epub 2023 Oct 19.

引用本文的文献

1
Negative Photoconductivity of Ag-Poly(heptazine imide).
ACS Omega. 2025 Jul 8;10(28):30424-30431. doi: 10.1021/acsomega.5c02134. eCollection 2025 Jul 22.
2
Carbon nitride caught in the act of artificial photosynthesis.
Nat Commun. 2025 Jan 3;16(1):374. doi: 10.1038/s41467-024-55518-x.
5
2D Janus ZrSSe/SnSSe Heterostructure: A Promising Candidate for Photocatalytic Water Splitting.
ACS Omega. 2024 Apr 24;9(18):19848-19858. doi: 10.1021/acsomega.3c08620. eCollection 2024 May 7.
7
Potassium Poly(heptazine imide) Coupled with TiC MXene-Derived TiO as a Composite Photocatalyst for Efficient Pollutant Degradation.
ACS Omega. 2023 Mar 20;8(12):11397-11405. doi: 10.1021/acsomega.3c00150. eCollection 2023 Mar 28.
8
Synthesis of Sulfonyl Chlorides from Aryldiazonium Salts Mediated by a Heterogeneous Potassium Poly(heptazine imide) Photocatalyst.
ACS Org Inorg Au. 2021 Dec 13;2(2):153-158. doi: 10.1021/acsorginorgau.1c00038. eCollection 2022 Apr 6.
9
Spiroheterocyclic Photocatalyst for Reducing QHIn-Persistent Pollutants, Dyes, and Transition-Metal Ions Cocatalyzed with Electrolytes.
ACS Omega. 2022 Oct 26;7(44):40203-40229. doi: 10.1021/acsomega.2c05103. eCollection 2022 Nov 8.
10
Modified Poly(Heptazine Imides): Minimizing HO Decomposition to Maximize Oxygen Reduction.
ACS Appl Mater Interfaces. 2022 Oct 31;14(44):49820-9. doi: 10.1021/acsami.2c14872.

本文引用的文献

1
2
Computational design of graphitic carbon nitride photocatalysts for water splitting.
Faraday Discuss. 2021 Apr 1;227:341-358. doi: 10.1039/c9fd00147f. Epub 2020 Dec 10.
3
Photocatalytic water splitting with a quantum efficiency of almost unity.
Nature. 2020 May;581(7809):411-414. doi: 10.1038/s41586-020-2278-9. Epub 2020 May 27.
4
On the Possibility of Helium Adsorption in Nitrogen Doped Graphitic Materials.
Sci Rep. 2020 Apr 2;10(1):5832. doi: 10.1038/s41598-020-62638-z.
5
Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies.
Chem Rev. 2020 Jan 22;120(2):919-985. doi: 10.1021/acs.chemrev.9b00201. Epub 2019 Aug 8.
6
Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation.
Nat Chem. 2019 Feb;11(2):146-153. doi: 10.1038/s41557-018-0172-y. Epub 2018 Dec 3.
7
Crystalline Carbon Nitride Semiconductors for Photocatalytic Water Splitting.
Angew Chem Int Ed Engl. 2019 May 6;58(19):6164-6175. doi: 10.1002/anie.201809897. Epub 2019 Feb 14.
8
Overall water splitting by Pt/g-CN photocatalysts without using sacrificial agents.
Chem Sci. 2016 May 1;7(5):3062-3066. doi: 10.1039/c5sc04572j. Epub 2016 Jan 27.
9
Enhanced photocatalytic activity of Se-doped TiO under visible light irradiation.
Sci Rep. 2018 Jun 8;8(1):8752. doi: 10.1038/s41598-018-27135-4.
10
Structure-Activity Relationships for Pt-Free Metal Phosphide Hydrogen Evolution Electrocatalysts.
Chemistry. 2018 May 23;24(29):7298-7311. doi: 10.1002/chem.201705322. Epub 2017 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验