Sanchez-Lievanos Karla R, Stair James L, Knowles Kathryn E
Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.
Inorg Chem. 2021 Apr 5;60(7):4291-4305. doi: 10.1021/acs.inorgchem.1c00040. Epub 2021 Mar 18.
Metal oxide materials that adopt the spinel crystal structure, such as metal ferrites (MFeO), present tetrahedral (A) and octahedral [B] sublattice sites surrounded by oxygen anions that provide a relatively weak crystal-field splitting. The formula of a metal ferrite material is most precisely described as (MFe)[MFe]O, where the parentheses and square brackets denote the tetrahedral and octahedral sites, respectively, and is the inversion parameter quantifying the distribution of M and Fe cations among these sites. The electronic, magnetic, and optical properties of spinel ferrites all depend on the magnitude of , which, in turn, depends on the relative sizes of the cations, their charge, and the relative crystal-field stabilization afforded by tetrahedral or octahedral coordination. Compared to bulk spinel ferrites, the large surface-area-to-volume ratio of spinel ferrite nanocrystals provides additional structural degrees of freedom that enable access to a broader range of values. Achieving synthetic control over the degree of inversion in addition to the size and shape is critical to tuning the properties of spinel ferrite nanocrystals. In this Forum Article, we review physical inorganic methods used to quantify in spinel ferrite nanocrystals, describe how the electronic, magnetic, and optical properties of these nanocrystals depend on , and discuss emerging strategies for achieving synthetic control over this parameter.
采用尖晶石晶体结构的金属氧化物材料,如金属铁氧体(MFeO),具有由氧阴离子包围的四面体(A)和八面体[B]亚晶格位点,这些位点提供相对较弱的晶体场分裂。金属铁氧体材料的化学式最准确地描述为(MFe)[MFe]O,其中括号和方括号分别表示四面体和八面体位点,而 是一个反演参数,用于量化M和Fe阳离子在这些位点之间的分布。尖晶石铁氧体的电子、磁性和光学性质都取决于 的大小,而 又取决于阳离子的相对大小、它们的电荷以及四面体或八面体配位所提供的相对晶体场稳定作用。与块状尖晶石铁氧体相比,尖晶石铁氧体纳米晶体的大表面积与体积比提供了额外的结构自由度,从而能够获得更广泛的 值范围。除了尺寸和形状之外,实现对反演程度的合成控制对于调节尖晶石铁氧体纳米晶体的性质至关重要。在这篇论坛文章中,我们回顾了用于量化尖晶石铁氧体纳米晶体中 的物理无机方法,描述了这些纳米晶体的电子、磁性和光学性质如何取决于 ,并讨论了实现对该参数进行合成控制的新兴策略。