Odio Oscar F, Tommasini Giuseppina, Teran F J, Ovejero Jesus G, Rubín Javier, Moros María, Del Sol-Fernández Susel
SECIHTI-Instituto Politécnico Nacional, Laboratorio Nacional de Conversión y Almacenamiento de Energía, CICATA-Legaria, 11500 Mexico City, Mexico.
Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain.
Nanoscale Horiz. 2025 Aug 4. doi: 10.1039/d5nh00254k.
Composition is a key parameter to effectively tune the magnetic anisotropy of magnetic nanoparticles, which in turn can modulate their structural-magnetic properties and final applications. The Mn content of manganese ferrite nanoparticles (MnFeO) deeply impacts their structure, anisotropy, magnetism, and their heating capacity. However, a direct correlation between Mn content, magnetic properties and heating efficiency is not yet clear. Herein, we report the synthesis of a wide range of MnFeO with = 0.14 to 1.40, with similar polyhedral morphologies and sizes (13 to 15 nm). By varying the Mn content (in the range of = 0.0 up to 0.70), we successfully tuned the effective anisotropy while maintaining saturation magnetization nearly constant. Highest Mn levels ( = 1.40) lead to structural changes and strain defects reflected in their poor saturation magnetization. Mn substitution is not uniform, instead promotes a compositional gradient across the MNPs, with the surface layers having a higher concentration of Mn than the core. The Mn-rich surface likely exhibits superparamagnetic (SPM) relaxation, while the core remains predominantly ferrimagnetic (FiM). Water transference results in cation leaching, promoting vacancies and changes in the local ferrite structure but with a minor impact on the magnetic properties compared with initial MNPs. We obtained the optimal Mn content that maximizes anisotropy toward improved specific loss power (SLP) values. The Néel relaxation mechanism is warranted regarding variable composition when sizes and shapes are maintained. Our detailed analysis provides a better understanding of the effect of Mn substitution on the heating efficiency through anisotropy modulation and straightforward guidance on optimizing MNP design for magnetic hyperthermia.
成分是有效调节磁性纳米粒子磁各向异性的关键参数,进而可以调节其结构-磁性能及最终应用。锰铁氧体纳米粒子(MnFeO)的锰含量对其结构、各向异性、磁性及其热容量有深刻影响。然而,锰含量、磁性和加热效率之间的直接关联尚不清楚。在此,我们报告了一系列锰含量x = 0.14至1.40的MnFeO的合成,它们具有相似的多面体形态和尺寸(13至15纳米)。通过改变锰含量(x范围为0.0至0.70),我们成功调节了有效各向异性,同时保持饱和磁化强度几乎恒定。最高锰含量(x = 1.40)导致结构变化和应变缺陷,这反映在其较差的饱和磁化强度上。锰的取代并不均匀,而是在整个磁性纳米粒子中促进了成分梯度,表面层的锰浓度高于核心。富含锰的表面可能表现出超顺磁性(SPM)弛豫,而核心仍主要为亚铁磁性(FiM)。水转移导致阳离子浸出,促进空位形成并改变局部铁氧体结构,但与初始磁性纳米粒子相比,对磁性能的影响较小。我们获得了使各向异性最大化以提高比损耗功率(SLP)值的最佳锰含量。当尺寸和形状保持不变时,对于成分可变的情况,奈尔弛豫机制是合理的。我们的详细分析有助于更好地理解锰取代通过各向异性调制对加热效率的影响,并为优化用于磁热疗的磁性纳米粒子设计提供直接指导。
2025-1
Cochrane Database Syst Rev. 2008-7-16
Cochrane Database Syst Rev. 2022-5-20
ACS Appl Mater Interfaces. 2025-3-5
Nanoscale Adv. 2022-8-25
J Colloid Interface Sci. 2020-10-15
ACS Appl Mater Interfaces. 2020-6-24