文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

揭示锰替代对锰铁氧体纳米颗粒各向异性控制和磁热疗的影响

Unraveling the Mn substitution effect on the anisotropy control and magnetic hyperthermia of MnFeO nanoparticles.

作者信息

Odio Oscar F, Tommasini Giuseppina, Teran F J, Ovejero Jesus G, Rubín Javier, Moros María, Del Sol-Fernández Susel

机构信息

SECIHTI-Instituto Politécnico Nacional, Laboratorio Nacional de Conversión y Almacenamiento de Energía, CICATA-Legaria, 11500 Mexico City, Mexico.

Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain.

出版信息

Nanoscale Horiz. 2025 Aug 4. doi: 10.1039/d5nh00254k.


DOI:10.1039/d5nh00254k
PMID:40755348
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12319668/
Abstract

Composition is a key parameter to effectively tune the magnetic anisotropy of magnetic nanoparticles, which in turn can modulate their structural-magnetic properties and final applications. The Mn content of manganese ferrite nanoparticles (MnFeO) deeply impacts their structure, anisotropy, magnetism, and their heating capacity. However, a direct correlation between Mn content, magnetic properties and heating efficiency is not yet clear. Herein, we report the synthesis of a wide range of MnFeO with = 0.14 to 1.40, with similar polyhedral morphologies and sizes (13 to 15 nm). By varying the Mn content (in the range of = 0.0 up to 0.70), we successfully tuned the effective anisotropy while maintaining saturation magnetization nearly constant. Highest Mn levels ( = 1.40) lead to structural changes and strain defects reflected in their poor saturation magnetization. Mn substitution is not uniform, instead promotes a compositional gradient across the MNPs, with the surface layers having a higher concentration of Mn than the core. The Mn-rich surface likely exhibits superparamagnetic (SPM) relaxation, while the core remains predominantly ferrimagnetic (FiM). Water transference results in cation leaching, promoting vacancies and changes in the local ferrite structure but with a minor impact on the magnetic properties compared with initial MNPs. We obtained the optimal Mn content that maximizes anisotropy toward improved specific loss power (SLP) values. The Néel relaxation mechanism is warranted regarding variable composition when sizes and shapes are maintained. Our detailed analysis provides a better understanding of the effect of Mn substitution on the heating efficiency through anisotropy modulation and straightforward guidance on optimizing MNP design for magnetic hyperthermia.

摘要

成分是有效调节磁性纳米粒子磁各向异性的关键参数,进而可以调节其结构-磁性能及最终应用。锰铁氧体纳米粒子(MnFeO)的锰含量对其结构、各向异性、磁性及其热容量有深刻影响。然而,锰含量、磁性和加热效率之间的直接关联尚不清楚。在此,我们报告了一系列锰含量x = 0.14至1.40的MnFeO的合成,它们具有相似的多面体形态和尺寸(13至15纳米)。通过改变锰含量(x范围为0.0至0.70),我们成功调节了有效各向异性,同时保持饱和磁化强度几乎恒定。最高锰含量(x = 1.40)导致结构变化和应变缺陷,这反映在其较差的饱和磁化强度上。锰的取代并不均匀,而是在整个磁性纳米粒子中促进了成分梯度,表面层的锰浓度高于核心。富含锰的表面可能表现出超顺磁性(SPM)弛豫,而核心仍主要为亚铁磁性(FiM)。水转移导致阳离子浸出,促进空位形成并改变局部铁氧体结构,但与初始磁性纳米粒子相比,对磁性能的影响较小。我们获得了使各向异性最大化以提高比损耗功率(SLP)值的最佳锰含量。当尺寸和形状保持不变时,对于成分可变的情况,奈尔弛豫机制是合理的。我们的详细分析有助于更好地理解锰取代通过各向异性调制对加热效率的影响,并为优化用于磁热疗的磁性纳米粒子设计提供直接指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e73/12319668/a4df253b4f15/d5nh00254k-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e73/12319668/2d89adb32fda/d5nh00254k-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e73/12319668/bc45c1cfdaa8/d5nh00254k-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e73/12319668/0a080a0e342c/d5nh00254k-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e73/12319668/8aa5fbdfb9b1/d5nh00254k-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e73/12319668/31389c99616b/d5nh00254k-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e73/12319668/7cf50ea411fa/d5nh00254k-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e73/12319668/a4df253b4f15/d5nh00254k-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e73/12319668/2d89adb32fda/d5nh00254k-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e73/12319668/bc45c1cfdaa8/d5nh00254k-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e73/12319668/0a080a0e342c/d5nh00254k-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e73/12319668/8aa5fbdfb9b1/d5nh00254k-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e73/12319668/31389c99616b/d5nh00254k-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e73/12319668/7cf50ea411fa/d5nh00254k-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e73/12319668/a4df253b4f15/d5nh00254k-p1.jpg

相似文献

[1]
Unraveling the Mn substitution effect on the anisotropy control and magnetic hyperthermia of MnFeO nanoparticles.

Nanoscale Horiz. 2025-8-4

[2]
Short-Term Memory Impairment

2025-1

[3]
Sexual Harassment and Prevention Training

2025-1

[4]
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.

Cochrane Database Syst Rev. 2008-7-16

[5]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[6]
Optimizing superparamagnetic ferrite nanoparticles: microwave-assisted thermal decomposition synthesis methods.

Nanoscale Adv. 2025-5-26

[7]
Nanoscale Engineering of Cobalt-Gallium Co-Doped Ferrites: A Strategy to Enhance High-Frequency Theranostic Magnetic Materials.

ACS Appl Nano Mater. 2025-7-2

[8]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[9]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[10]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

本文引用的文献

[1]
Control of Anisotropy and Magnetic Hyperthermia Effect by Addition of Cobalt on Magnetite Nanoparticles.

ACS Appl Mater Interfaces. 2025-3-5

[2]
Application of Mn Fe FeO ( = 0-1) Nanoparticles in Magnetic Fluid Hyperthermia: Correlation with Cation Distribution and Magnetostructural Properties.

ACS Omega. 2022-11-22

[3]
Effect of manganese substitution of ferrite nanoparticles on particle grain structure.

Nanoscale Adv. 2022-8-25

[4]
The Metal Ion Release of Manganese Ferrite Nanoparticles: Kinetics, Effects on Magnetic Resonance Relaxivities, and Toxicity.

ACS Appl Bio Mater. 2022-6-20

[5]
Ultrasmall Manganese Ferrites for In Vivo Catalase Mimicking Activity and Multimodal Bioimaging.

Small. 2022-4

[6]
Iron oxide-manganese oxide nanoparticles with tunable morphology and switchable MRI contrast mode triggered by intracellular conditions.

J Colloid Interface Sci. 2022-5

[7]
Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.

Chem Soc Rev. 2021-10-18

[8]
Cation Distribution in Spinel Ferrite Nanocrystals: Characterization, Impact on their Physical Properties, and Opportunities for Synthetic Control.

Inorg Chem. 2021-4-5

[9]
The influence of cation incorporation and leaching in the properties of Mn-doped nanoparticles for biomedical applications.

J Colloid Interface Sci. 2020-10-15

[10]
Highly Reproducible Hyperthermia Response in Water, Agar, and Cellular Environment by Discretely PEGylated Magnetite Nanoparticles.

ACS Appl Mater Interfaces. 2020-6-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索