Suppr超能文献

3D 人脸从 X 开始:从多种来源学习人脸形状。

3D Face From X: Learning Face Shape From Diverse Sources.

出版信息

IEEE Trans Image Process. 2021;30:3815-3827. doi: 10.1109/TIP.2021.3065798. Epub 2021 Mar 25.

Abstract

We present a novel method to jointly learn a 3D face parametric model and 3D face reconstruction from diverse sources. Previous methods usually learn 3D face modeling from one kind of source, such as scanned data or in-the-wild images. Although 3D scanned data contain accurate geometric information of face shapes, the capture system is expensive and such datasets usually contain a small number of subjects. On the other hand, in-the-wild face images are easily obtained and there are a large number of facial images. However, facial images do not contain explicit geometric information. In this paper, we propose a method to learn a unified face model from diverse sources. Besides scanned face data and face images, we also utilize a large number of RGB-D images captured with an iPhone X to bridge the gap between the two sources. Experimental results demonstrate that with training data from more sources, we can learn a more powerful face model.

摘要

我们提出了一种新的方法,能够从多种来源联合学习 3D 人脸参数模型和 3D 人脸重建。以前的方法通常从单一来源学习 3D 人脸建模,例如扫描数据或野外图像。虽然 3D 扫描数据包含准确的人脸形状几何信息,但采集系统昂贵,并且此类数据集通常包含少量的对象。另一方面,野外人脸图像易于获取,并且存在大量的面部图像。然而,人脸图像不包含明确的几何信息。在本文中,我们提出了一种从多种来源学习统一人脸模型的方法。除了扫描人脸数据和人脸图像之外,我们还利用大量使用 iPhone X 拍摄的 RGB-D 图像来弥合这两种来源之间的差距。实验结果表明,通过使用更多来源的训练数据,我们可以学习到更强大的人脸模型。

相似文献

1
3D Face From X: Learning Face Shape From Diverse Sources.3D 人脸从 X 开始:从多种来源学习人脸形状。
IEEE Trans Image Process. 2021;30:3815-3827. doi: 10.1109/TIP.2021.3065798. Epub 2021 Mar 25.
2
3D Reconstruction of "In-the-Wild" Faces in Images and Videos.“野外”人脸的图像和视频的三维重建。
IEEE Trans Pattern Anal Mach Intell. 2018 Nov;40(11):2638-2652. doi: 10.1109/TPAMI.2018.2832138. Epub 2018 May 15.
3
FaceScape: 3D Facial Dataset and Benchmark for Single-View 3D Face Reconstruction.FaceScape:用于单视图3D面部重建的3D面部数据集与基准
IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):14528-14545. doi: 10.1109/TPAMI.2023.3307338. Epub 2023 Nov 3.
4
Joint Face Alignment and 3D Face Reconstruction with Application to Face Recognition.联合人脸对齐和 3D 人脸重建及其在人脸识别中的应用。
IEEE Trans Pattern Anal Mach Intell. 2020 Mar;42(3):664-678. doi: 10.1109/TPAMI.2018.2885995. Epub 2018 Dec 10.
5
Real-Time 3D Facial Tracking via Cascaded Compositional Learning.基于级联组合学习的实时三维人脸跟踪。
IEEE Trans Image Process. 2021;30:3844-3857. doi: 10.1109/TIP.2021.3065819. Epub 2021 Mar 25.
7
3D-Aided Dual-Agent GANs for Unconstrained Face Recognition.基于 3D 辅助的双代理 GAN 用于无约束人脸识别。
IEEE Trans Pattern Anal Mach Intell. 2019 Oct;41(10):2380-2394. doi: 10.1109/TPAMI.2018.2858819. Epub 2018 Jul 23.
9
Differential 3D Facial Recognition: Adding 3D to Your State-of-the-Art 2D Method.三维差分人脸识别:为您的最先进二维方法添加三维技术。
IEEE Trans Pattern Anal Mach Intell. 2020 Jul;42(7):1582-1593. doi: 10.1109/TPAMI.2020.2986951. Epub 2020 Apr 13.
10
3D Human Pose Machines with Self-Supervised Learning.基于自监督学习的 3D 人体姿态估计
IEEE Trans Pattern Anal Mach Intell. 2020 May;42(5):1069-1082. doi: 10.1109/TPAMI.2019.2892452. Epub 2019 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验