Guioth Jules, Bertin Eric
DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, England, United Kingdom.
Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
Phys Rev E. 2021 Feb;103(2-1):022107. doi: 10.1103/PhysRevE.103.022107.
We introduce a nonequilibrium grand-canonical ensemble defined by considering the stationary state of a driven system of particles put in contact with a particle reservoir. When an additivity assumption holds for the large deviation function of density, a chemical potential of the reservoir can be defined. The grand-canonical distribution then takes a form similar to the equilibrium one. At variance with equilibrium, though, the probability weight is "renormalized" by a contribution coming from the contact, with respect to the canonical probability weight of the isolated system. A formal grand-canonical potential can be introduced in terms of a scaled cumulant generating function, defined as the Legendre-Fenchel transform of the large deviation function of density. The role of the formal Legendre parameter can be played, physically, by the chemical potential of the reservoir when the latter can be defined, or by a potential energy difference applied between the system and the reservoir. Static fluctuation-response relations naturally follow from the large deviation structure. Some of the results are illustrated on two different explicit examples, a gas of noninteracting active particles and a lattice model of interacting particles.
我们引入了一种非平衡巨正则系综,它是通过考虑与粒子库接触的受驱粒子系统的稳态来定义的。当对密度的大偏差函数成立可加性假设时,就可以定义库的化学势。然后巨正则分布会呈现出与平衡态分布相似的形式。不过,与平衡态不同的是,相对于孤立系统的正则概率权重,概率权重会因来自接触的贡献而“重整化”。可以根据一个缩放累积量生成函数引入一个形式上的巨正则势,该函数定义为密度大偏差函数的勒让德 - 芬切尔变换。当可以定义库的化学势时,形式上的勒让德参数在物理上可以由库的化学势来扮演,或者由系统与库之间施加的势能差来扮演。静态涨落 - 响应关系自然地源于大偏差结构。在两个不同的具体例子中展示了一些结果,一个是无相互作用的活性粒子气体,另一个是相互作用粒子的晶格模型。