Suppr超能文献

印度喜马拉雅地区生物量碳和土壤有机碳储量的格局和驱动因素。

Patterns and driving factors of biomass carbon and soil organic carbon stock in the Indian Himalayan region.

机构信息

Department of Forestry, Mizoram University, Aizawl, India.

Department of Information Technology, North-Eastern Hill University, Shillong, India.

出版信息

Sci Total Environ. 2021 May 20;770:145292. doi: 10.1016/j.scitotenv.2021.145292. Epub 2021 Jan 22.

Abstract

Tree-based ecosystems are critical to climate change mitigation. The study analysed carbon (C) stock patterns and examined the importance of environmental variables in predicting carbon stock in biomass and soils of the Indian Himalayan Region (IHR). We conducted a synthesis of 100 studies reporting biomass carbon stock and 67 studies on soil organic carbon (SOC) stock from four land-uses: forests, plantation, agroforest, and herbaceous ecosystem from the IHR. Machine learning techniques were used to examine the importance of various environmental variables in predicting carbon stock in biomass and soils. Despite large variations in biomass C and SOC stock (mean ± SD) within the land-uses, natural forests have the highest biomass C stock (138.5 ± 87.3 Mg C ha), and plantation forests exhibited the highest SOC stock (168.8 ± 74.4 Mg C ha) in the top 1-m of soils. The relationship between the environmental variables (altitude, latitude, precipitation, and temperature) and carbon stock was not significantly correlated. The prediction of biomass carbon and SOC stock using different machine learning techniques (Adaboost, Bagging, Random Forest, and XGBoost) shows that the XGBoost model can predict the carbon stock for the IHR closely. Our study confirms that the carbon stock in the IHR vary on a large scale due to a diverse range of land-use and ecosystems within the region. Therefore, predicting the driver of carbon stock on a single environmental variable is impossible for the entire IHR. The IHR possesses a prominent carbon sink and biodiversity pool. Therefore, its protection is essential in fulfilling India's commitment to nationally determined contributions (NDC). Our data synthesis may also provide a baseline for the precise estimation of carbon stock, which will be vital for India's National Mission for Sustaining the Himalayan Ecosystem (NMSHE).

摘要

基于树的生态系统对于减缓气候变化至关重要。本研究分析了碳(C)储量模式,并检验了环境变量在预测印度喜马拉雅地区(IHR)生物量和土壤碳储量中的重要性。我们对 100 项报告生物量碳储量的研究和 67 项关于土壤有机碳(SOC)储量的研究进行了综合分析,这些研究来自 IHR 的四种土地利用类型:森林、人工林、农林和草本生态系统。使用机器学习技术来检验各种环境变量在预测生物量和土壤碳储量中的重要性。尽管不同土地利用类型内的生物量 C 和 SOC 储量(平均值±标准差)存在很大差异,但天然林具有最高的生物量 C 储量(138.5±87.3 Mg C ha),而人工林在土壤表层 1 米处表现出最高的 SOC 储量(168.8±74.4 Mg C ha)。环境变量(海拔、纬度、降水和温度)与碳储量之间的关系没有显著相关性。使用不同机器学习技术(Adaboost、Bagging、随机森林和 XGBoost)预测生物量碳和 SOC 储量的结果表明,XGBoost 模型可以很好地预测 IHR 的碳储量。我们的研究证实,由于该地区内广泛的土地利用和生态系统,IHR 的碳储量存在较大的差异。因此,对于整个 IHR 而言,基于单一环境变量预测碳储量是不可能的。IHR 拥有突出的碳汇和生物多样性库。因此,保护该地区对于履行印度对国家自主贡献(NDC)的承诺至关重要。我们的数据综合也为精确估计碳储量提供了基准,这对于印度的喜马拉雅生态系统可持续性国家使命(NMSHE)至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验