Suppr超能文献

用于三维牵引力显微镜的高级计算机模拟验证框架及其在体外发芽血管生成模型中的应用。

Advanced in silico validation framework for three-dimensional traction force microscopy and application to an in vitro model of sprouting angiogenesis.

机构信息

Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Belgium.

Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain.

出版信息

Acta Biomater. 2021 May;126:326-338. doi: 10.1016/j.actbio.2021.03.014. Epub 2021 Mar 15.

Abstract

In the last decade, cellular forces in three-dimensional hydrogels that mimic the extracellular matrix have been calculated by means of Traction Force Microscopy (TFM). However, characterizing the accuracy limits of a traction recovery method is critical to avoid obscuring physiological information due to traction recovery errors. So far, 3D TFM algorithms have only been validated using simplified cell geometries, bypassing image processing steps or arbitrarily simulating focal adhesions. Moreover, it is still uncertain which of the two common traction recovery methods, i.e., forward and inverse, is more robust against the inherent challenges of 3D TFM. In this work, we established an advanced in silico validation framework that is applicable to any 3D TFM experimental setup and that can be used to correctly couple the experimental and computational aspects of 3D TFM. Advancements relate to the simultaneous incorporation of complex cell geometries, simulation of microscopy images of varying bead densities and different focal adhesion sizes and distributions. By measuring the traction recovery error with respect to ground truth solutions, we found that while highest traction recovery errors occur for cases with sparse and small focal adhesions, our implementation of the inverse method improves two-fold the accuracy with respect to the forward method (average error of 23% vs. 50%). This advantage was further supported by recovering cellular tractions around angiogenic sprouts in an in vitro model of angiogenesis. The inverse method recovered higher traction peaks and a clearer pulling pattern at the sprout protrusion tips than the forward method. STATEMENT OF SIGNIFICANCE: Biomaterial performance is often studied by quantifying cell-matrix mechanical interactions by means of Traction Force Microscopy (TFM). However, 3D TFM algorithms are often validated in simplified scenarios, which do not allow to fully assess errors that could obscure physiological information. Here, we established an advanced in silico validation framework that mimics real TFM experimental conditions and that characterizes the expected errors of a 3D TFM workflow. We apply this framework to demonstrate the enhanced accuracy of a novel inverse traction recovery method that is illustrated in the context of an in vitro model of sprouting angiogenesis. Together, our study shows the importance of a proper traction recovery method to minimise errors and the need for an advanced framework to assess those errors.

摘要

在过去的十年中,通过牵引力显微镜(Traction Force Microscopy,TFM)已经计算出了模拟细胞外基质的三维水凝胶中的细胞力。然而,描述牵引力恢复方法的精度极限对于避免由于牵引力恢复误差而掩盖生理信息至关重要。到目前为止,3D TFM 算法仅使用简化的细胞几何形状进行了验证,绕过了图像处理步骤或任意模拟焦点粘连。此外,尚不确定两种常见的牵引力恢复方法,即正向和反向,哪一种更能抵抗 3D TFM 的固有挑战。在这项工作中,我们建立了一个先进的计算机模拟验证框架,该框架适用于任何 3D TFM 实验设置,并可用于正确地将 3D TFM 的实验和计算方面联系起来。进展涉及同时纳入复杂的细胞几何形状、模拟不同的微镜图像的珠密度和不同的焦点粘连大小和分布。通过测量相对于真实解的牵引力恢复误差,我们发现,虽然稀疏和小的焦点粘连会导致最高的牵引力恢复误差,但我们实现的反向方法相对于正向方法提高了两倍的准确性(平均误差为 23%对 50%)。在血管生成的体外模型中,恢复血管生成芽周围的细胞牵引力,进一步支持了这种优势。与正向方法相比,反向方法在芽突尖端恢复了更高的牵引力峰值和更清晰的牵引模式。

意义陈述

生物材料的性能通常通过牵引力显微镜(Traction Force Microscopy,TFM)来量化细胞-基质的机械相互作用进行研究。然而,3D TFM 算法通常在简化的情况下进行验证,这不能完全评估可能掩盖生理信息的误差。在这里,我们建立了一个先进的计算机模拟验证框架,该框架模拟了真实的 TFM 实验条件,并描述了 3D TFM 工作流程的预期误差。我们应用该框架来证明一种新的反向牵引力恢复方法的准确性提高,该方法在体外血管生成模型中进行了说明。总之,我们的研究表明,为了最小化误差,需要一个适当的牵引力恢复方法,并且需要一个先进的框架来评估这些误差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验