Suppr超能文献

无袖带血压估计:基于光电容积脉搏波信号和心电图。

Cuff-less blood pressure estimation from photoplethysmography signal and electrocardiogram.

机构信息

College of Physics and Telecommunications Engineering, South China Normal University, Guangzhou, 510006, China.

Guandong Institute of Medical Instruments, Guangzhou, 510000, China.

出版信息

Phys Eng Sci Med. 2021 Jun;44(2):397-408. doi: 10.1007/s13246-021-00989-1. Epub 2021 Mar 18.

Abstract

In recent studies, the physiological parameters derived from human vital signals are found as the status response of the heart and arteries. In this paper, we therefore firstly attempt to extract abundant vital features from photoplethysmography(PPG) signal, its multivariate derivative signals and Electrocardiogram(ECG) signal, which are verified its statistical significance in BP estimation through statistical analysis t-test. Afterwards, the optimal feature set are obtained by usnig mutual information coefficient analysis, which could investigate the potential associations with blood pressure. The optimized feature set are aid as an input to various machine learning strategies for BP estimation. The results indicates that AdaBoost based BP estimation model outperforms other regression methods. Concurrently, AdaBoost-based model is further analyzed by using the Histograms of Estimation Error and Bland-Altman Plot. The results also indicate the great BP estimation performance of the proposed BP estimation method, and it stays within the Advancement of Medical Instrumention(AAMI) standard. Regarding the British Hypertension Society (BHS), it achieves the grade A for DBP and grade B for MAP. Besides, the experimental result illustrated that our proposed BP estimation method could reduce the MAE and the STD, and improve the r for SBP, MAP and DBP estimation, respectively, which further demonstrates the feasibility of our proposed BP estimation method in this paper.

摘要

在最近的研究中,从人体生命信号中得出的生理参数被发现是心脏和动脉的状态反应。因此,在本文中,我们首先尝试从光电容积脉搏波图(PPG)信号、其多元导数信号和心电图(ECG)信号中提取丰富的生命特征,通过统计分析 t 检验验证其在血压估计中的统计意义。之后,我们使用互信息系数分析获得了最优特征集,以研究与血压的潜在关联。优化后的特征集被用作各种机器学习策略进行血压估计的输入。结果表明,基于 AdaBoost 的血压估计模型优于其他回归方法。同时,我们进一步使用估计误差直方图和 Bland-Altman 图对基于 AdaBoost 的模型进行了分析。结果还表明,所提出的血压估计方法具有出色的血压估计性能,并且符合 Advancement of Medical Instrumention(AAMI)标准。对于英国高血压学会(BHS),它的舒张压达到 A 级,平均动脉压达到 B 级。此外,实验结果表明,我们提出的血压估计方法可以降低 MAE 和 STD,并分别提高 SBP、MAP 和 DBP 的 r 值,这进一步证明了本文所提出的血压估计方法的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验