State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China.
Sensors (Basel). 2021 Oct 29;21(21):7207. doi: 10.3390/s21217207.
Compared with diastolic blood pressure (DBP) and systolic blood pressure (SBP), the blood pressure (BP) waveform contains richer physiological information that can be used for disease diagnosis. However, most models based on photoplethysmogram (PPG) signals can only estimate SBP and DBP and are susceptible to noise signals. We focus on estimating the BP waveform rather than discrete BP values. We propose a model based on a generalized regression neural network to estimate the BP waveform, SBP and DBP. This model takes the raw PPG signal as input and BP waveform as output. The SBP and DBP are extracted from the estimated BP waveform. In addition, the model contains encoders and decoders, and their role is to be responsible for the conversion between the time domain and frequency domain of the waveform. The prediction results of our model show that the mean absolute error is 3.96 ± 5.36 mmHg for SBP and 2.39 ± 3.28 mmHg for DBP, the root mean square error is 5.54 for SBP and 3.45 for DBP. These results fulfill the Association for the Advancement of Medical Instrumentation (AAMI) standard and obtain grade A according to the British Hypertension Society (BHS) standard. The results show that the proposed model can effectively estimate the BP waveform only using the raw PPG signal.
与舒张压(DBP)和收缩压(SBP)相比,血压(BP)波形包含更丰富的生理信息,可用于疾病诊断。然而,大多数基于光电容积脉搏波(PPG)信号的模型只能估计 SBP 和 DBP,并且容易受到噪声信号的影响。我们专注于估计血压波形,而不是离散的血压值。我们提出了一种基于广义回归神经网络的模型,用于估计血压波形、SBP 和 DBP。该模型以原始 PPG 信号作为输入,以血压波形作为输出。SBP 和 DBP 从估计的血压波形中提取。此外,该模型包含编码器和解码器,它们的作用是负责波形的时域和频域之间的转换。我们的模型的预测结果表明,SBP 的平均绝对误差为 3.96±5.36mmHg,DBP 的平均绝对误差为 2.39±3.28mmHg,SBP 的均方根误差为 5.54,DBP 的均方根误差为 3.45。这些结果符合医疗器械促进协会(AAMI)标准,并根据英国高血压学会(BHS)标准获得 A 级。结果表明,该模型仅使用原始 PPG 信号就能有效地估计血压波形。