Tarrago Maxime, Römelt Christina, Nehrkorn Joscha, Schnegg Alexander, Neese Frank, Bill Eckhard, Ye Shengfa
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.
Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
Inorg Chem. 2021 Apr 5;60(7):4966-4985. doi: 10.1021/acs.inorgchem.1c00031. Epub 2021 Mar 19.
Iron porphyrins exhibit unrivalled catalytic activity for electrochemical CO-to-CO conversion. Despite intensive experimental and computational studies in the last 4 decades, the exact nature of the prototypical square-planar [Fe(TPP)] complex (; TPP = tetraphenylporphyrinate dianion) remained highly debated. Specifically, its intermediate-spin ( = 1) ground state was contradictorily assigned to either a nondegenerate A state with a (d)(d)(d) configuration or a degenerate E state with a (d)(d)(d)/(d)(d)(d) configuration. To address this question, we present herein a comprehensive, spectroscopy-based theoretical and experimental electronic-structure investigation on complex . Highly correlated wave-function-based computations predicted that A and E are well-isolated from other triplet states by ca. 4000 cm, whereas their splitting Δ is on par with the effective spin-orbit coupling (SOC) constant of iron(II) (≈400 cm). Therfore, we invoked an effective Hamiltonian (EH) operating on the nine magnetic sublevels arising from SOC between the A and E states. This approach enabled us to successfully simulate all spectroscopic data of obtained by variable-temperature and variable-field magnetization, applied-field Fe Mössbauer, and terahertz electron paramagnetic resonance measurements. Remarkably, the EH contains only three adjustable parameters, namely, the energy gap without SOC, Δ, an angle θ that describes the mixing of (d)(d)(d) and (d)(d)(d) configurations, and the ⟨⟩ expectation value of the iron d orbitals that is necessary to estimate the Fe magnetic hyperfine coupling tensor. The EH simulations revealed that the triplet ground state of is genuinely multiconfigurational with substantial parentages of both A (<88%) and E (>12%), owing to their accidental near-triple degeneracy with Δ = +950 cm. As a consequence of this peculiar electronic structure, exhibits a huge effective magnetic moment (4.2 μB at 300 K), large temperature-independent paramagnetism, a large and positive axial zero-field splitting, strong easy-plane magnetization ( ≈ 3 and ≈ 1.7) and a large and positive internal field at the Fe nucleus aligned in the plane. Further in-depth analyses suggested that ≫ is a general spectroscopic signature of near-triple orbital degeneracy with more than half-filled pseudodegenerate orbital sets. Implications of the unusual electronic structure of for CO reduction are discussed.
铁卟啉在电化学CO转化为CO₂的过程中表现出无与伦比的催化活性。尽管在过去40年里进行了大量的实验和计算研究,但原型平面正方形[Fe(TPP)]配合物(TPP = 四苯基卟啉二价阴离子)的确切性质仍存在激烈争议。具体而言,其中间自旋(S = 1)基态被矛盾地指定为具有(dxy)²(dyz)¹(dzx)¹构型的非简并A态或具有(dxy)¹(dyz)²(dzx)¹/(dxy)¹(dyz)¹(dzx)²构型的简并E态。为了解决这个问题,我们在此展示了一项基于光谱的关于该配合物的全面理论和实验电子结构研究。基于高度相关波函数的计算预测,A态和E态与其他三重态被约4000 cm⁻¹很好地隔离,而它们之间的分裂Δ与铁(II)的有效自旋 - 轨道耦合(SOC)常数相当(≈400 cm⁻¹)。因此,我们引入了一个有效哈密顿量(EH),作用于由A态和E态之间的SOC产生的九个磁子能级上。这种方法使我们能够成功模拟通过变温变场磁化、外加场Fe穆斯堡尔和太赫兹电子顺磁共振测量得到的该配合物的所有光谱数据。值得注意的是,EH仅包含三个可调参数,即无SOC时的能隙、描述(dxy)²(dyz)¹(dzx)¹和(dxy)¹(dyz)²(dzx)¹/(dxy)¹(dyz)¹(dzx)²构型混合的角度θ,以及估计铁磁超精细耦合张量所需的铁d轨道的⟨Sz⟩期望值。EH模拟表明,该配合物的三重基态是真正的多构型,A态(<88%)和E态(>12%)都有相当的占比,这是由于它们意外地接近三重简并,Δ = +950 cm⁻¹。由于这种特殊的电子结构,该配合物表现出巨大的有效磁矩(300 K时为4.2 μB)、大的温度无关顺磁性、大的正轴向零场分裂、强的易平面磁化(gx ≈ 3和gy ≈ 1.7)以及在xy平面内排列的铁核处有大的正内场。进一步的深入分析表明,gx ≫ gy是具有超过半填充伪简并轨道集的近三重轨道简并的一般光谱特征。讨论了该配合物异常电子结构对CO还原的影响。