Wang Juan, Pan Mingwang, Yuan Jinfeng, Liu Gang, Zhu Lei
Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China.
Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, PR China.
ACS Appl Mater Interfaces. 2021 Mar 31;13(12):14669-14678. doi: 10.1021/acsami.0c22273. Epub 2021 Mar 19.
The current syntheses of spheres-on-sphere (SOS) microsphere, which possesses both hollow cavity and hierarchical structure, mainly rely on complicated routes and template removal. In this study, a one pot nanoengineering strategy inspired by the automatic transport behavior of water in plants is successfully developed to fabricate SOS microsphere in tandem with a traditional soft template method in the preparation of hollow structure. Amphiphilic siloxane oligomers generated in situ from methyltriethoxylsilane (MTES) under acidic conditions are anchored on the surface of soft template St monomer droplets, sequentially completing hydrolysis-polycondensation and forming a mesoporous polysilsesquioxane (PSQ) shell. Then, the St monomers located in cavity migrate outward under the combined action of capillary force stemming from mesoporous and osmotic pressure generating from inside-outside of the PSQ shell and polymerize on the outside of the hollow PSQ shell, in which residual siloxane oligomers further anchor on the polystyrene (PS) surface to reduce the surface energy of the system, finally resulting in the successful formation of SOS particles. To reduce thermal insulation coefficient of the material, the PS phase in SOS particles is removed to obtain the particles with multiscale hollow structure (SOS-MH), which have more hollow cavities to encapsulate more air. The presence of a much hollow structure in SOS-MH particles enables the thermal conductivity of polyacrylonitrile (PAN)/SOS-MH composite fibrous membranes (0.0307 W m K) to decrease by about 40% compared to that of pure PAN fibrous films (0.0520 W m K) at the same thickness of 1 mm, and the material also has moisture resistance due to the existence of a hierarchical shell.
目前具有中空腔和分级结构的球上球(SOS)微球的合成主要依赖于复杂的路线和模板去除。在本研究中,受植物中水分自动传输行为启发,成功开发了一种一锅法纳米工程策略,与传统软模板法相结合制备中空结构的同时制备SOS微球。在酸性条件下由甲基三乙氧基硅烷(MTES)原位生成的两亲性硅氧烷低聚物锚定在软模板苯乙烯(St)单体液滴表面,依次完成水解缩聚并形成介孔聚倍半硅氧烷(PSQ)壳。然后,位于腔内的St单体在介孔产生的毛细管力和PSQ壳内外产生的渗透压的共同作用下向外迁移,并在中空PSQ壳的外部聚合,其中残留的硅氧烷低聚物进一步锚定在聚苯乙烯(PS)表面以降低体系的表面能,最终成功形成SOS颗粒。为了降低材料的热绝缘系数,去除SOS颗粒中的PS相以获得具有多尺度中空结构的颗粒(SOS-MH),其具有更多的中空腔以封装更多的空气。SOS-MH颗粒中大量中空结构的存在使得聚丙烯腈(PAN)/SOS-MH复合纤维膜(0.0307 W m K)在相同厚度为1 mm时的热导率比纯PAN纤维膜(0.0520 W m K)降低约40%,并且由于分级壳的存在该材料还具有防潮性。