School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA.
School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA.
Curr Biol. 2021 Apr 12;31(7):1499-1507.e3. doi: 10.1016/j.cub.2020.11.018. Epub 2021 Mar 18.
Sexual reproduction shuffles the parental genomes to generate new genetic combinations. To achieve that, the genome is subjected to numerous double-strand breaks, the repair of which involves two crucial decisions: repair pathway and repair template. Use of crossover pathways with the homologous chromosome as template exchanges genetic information and directs chromosome segregation. Crossover repair, however, can compromise the integrity of the repair template and is therefore tightly regulated. The extent to which crossover pathways are used during sister-directed repair is unclear because the identical sister chromatids are difficult to distinguish. Nonetheless, indirect assays have led to the suggestion that inter-sister crossovers, or sister chromatid exchanges (SCEs), are quite common. Here we devised a technique to directly score physiological SCEs in the C. elegans germline using selective sister chromatid labeling with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU). Surprisingly, we find SCEs to be rare in meiosis, accounting for <2% of repair events. SCEs remain rare even when the homologous chromosome is unavailable, indicating that almost all sister-directed repair is channeled into noncrossover pathways. We identify two mechanisms that limit SCEs. First, SCEs are elevated in the absence of the RecQ helicase BLM. Second, the synaptonemal complex-a conserved interface that promotes crossover repair-promotes SCEs when localized between the sisters. Our data suggest that crossover pathways in C. elegans are only used to generate the single necessary link between the homologous chromosomes. Noncrossover pathways repair almost all other breaks, regardless of the repair template.
有性生殖通过打乱双亲基因组来产生新的遗传组合。为了实现这一目标,基因组会受到大量双链断裂的影响,这些断裂的修复涉及两个关键决策:修复途径和修复模板。利用同源染色体作为模板的交叉途径可以交换遗传信息并指导染色体分离。然而,交叉修复可能会破坏修复模板的完整性,因此受到严格调控。在姐妹染色单体导向修复过程中使用交叉途径的程度尚不清楚,因为难以区分同源的姐妹染色单体。尽管如此,间接检测方法表明,姐妹染色单体之间的交叉或姐妹染色单体交换(SCEs)非常常见。在这里,我们设计了一种技术,通过使用胸腺嘧啶类似物 5-乙炔基-2'-脱氧尿苷(EdU)选择性标记姐妹染色单体,直接在 C. elegans 生殖系中评分生理 SCEs。令人惊讶的是,我们发现减数分裂中的 SCEs 很少,占修复事件的<2%。即使同源染色体不可用,SCEs 仍然很少,这表明几乎所有姐妹染色单体导向的修复都被引导到非交叉途径中。我们确定了两种限制 SCEs 的机制。首先,在缺乏 RecQ 解旋酶 BLM 的情况下,SCEs 会增加。其次,联会复合体——一种促进交叉修复的保守界面——在姐妹染色单体之间定位时会促进 SCEs。我们的数据表明,C. elegans 中的交叉途径仅用于产生同源染色体之间必需的单链接。非交叉途径修复几乎所有其他断裂,而不考虑修复模板。