Suppr超能文献

区分人类胰岛单细胞基因调控网络:一种新的深度学习应用。

Discriminating the single-cell gene regulatory networks of human pancreatic islets: A novel deep learning application.

机构信息

Department of Computer Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.

Department of Physics, Chuo University, Tokyo, 112-8551, Japan.

出版信息

Comput Biol Med. 2021 May;132:104257. doi: 10.1016/j.compbiomed.2021.104257. Epub 2021 Feb 6.

Abstract

Analysis of single-cell pancreatic data can play an important role in understanding various metabolic diseases and health conditions. Due to the sparsity and noise present in such single-cell gene expression data, inference of single-cell gene regulatory networks remains a challenge. Since recent studies have reported the reliable inference of single-cell gene regulatory networks (SCGRNs), the current study focused on discriminating the SCGRNs of T2D patients from those of healthy controls. By accurately distinguishing SCGRNs of healthy pancreas from those of T2D pancreas, it would be possible to annotate, organize, visualize, and identify common patterns of SCGRNs in metabolic diseases. Such annotated SCGRNs could play an important role in accelerating the process of building large data repositories. This study aimed to contribute to the development of a novel deep learning (DL) application. First, we generated a dataset consisting of 224 SCGRNs belonging to both T2D and healthy pancreas and made it freely available. Next, we chose seven DL architectures, including VGG16, VGG19, Xception, ResNet50, ResNet101, DenseNet121, and DenseNet169, trained each of them on the dataset, and checked their prediction based on a test set. Of note, we evaluated the DL architectures on a single NVIDIA GeForce RTX 2080Ti GPU. Experimental results on the whole dataset, using several performance measures, demonstrated the superiority of VGG19 DL model in the automatic classification of SCGRNs, derived from the single-cell pancreatic data.

摘要

单细胞胰腺数据的分析在理解各种代谢疾病和健康状况方面可以发挥重要作用。由于单细胞基因表达数据中存在稀疏性和噪声,因此推断单细胞基因调控网络仍然是一个挑战。由于最近的研究已经报告了单细胞基因调控网络(SCGRN)的可靠推断,本研究专注于从健康对照中区分 T2D 患者的 SCGRN。通过准确地区分健康胰腺和 T2D 胰腺的 SCGRN,可以对代谢疾病中 SCGRN 的常见模式进行注释、组织、可视化和识别。这些注释的 SCGRN 可以在加速构建大型数据库的过程中发挥重要作用。本研究旨在为开发一种新的深度学习(DL)应用做出贡献。首先,我们生成了一个包含 224 个属于 T2D 和健康胰腺的 SCGRN 的数据集,并将其免费提供。接下来,我们选择了七种 DL 架构,包括 VGG16、VGG19、Xception、ResNet50、ResNet101、DenseNet121 和 DenseNet169,在数据集上对它们进行训练,并根据测试集检查它们的预测。值得注意的是,我们在单个 NVIDIA GeForce RTX 2080Ti GPU 上评估了 DL 架构。使用多种性能指标对整个数据集进行的实验结果表明,VGG19 DL 模型在自动分类单细胞胰腺数据衍生的 SCGRN 方面具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验