Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, 1-2-1, Asahi-machi, Takamatsu, Kagawa 760-8557, Japan.
Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
Biomolecules. 2020 Jul 1;10(7):984. doi: 10.3390/biom10070984.
In this study, we used panoramic X-ray images to classify and clarify the accuracy of different dental implant brands via deep convolutional neural networks (CNNs) with transfer-learning strategies. For objective labeling, 8859 implant images of 11 implant systems were used from digital panoramic radiographs obtained from patients who underwent dental implant treatment at Kagawa Prefectural Central Hospital, Japan, between 2005 and 2019. Five deep CNN models (specifically, a basic CNN with three convolutional layers, VGG16 and VGG19 transfer-learning models, and finely tuned VGG16 and VGG19) were evaluated for implant classification. Among the five models, the finely tuned VGG16 model exhibited the highest implant classification performance. The finely tuned VGG19 was second best, followed by the normal transfer-learning VGG16. We confirmed that the finely tuned VGG16 and VGG19 CNNs could accurately classify dental implant systems from 11 types of panoramic X-ray images.
在这项研究中,我们使用全景 X 射线图像通过具有迁移学习策略的深度卷积神经网络 (CNN) 对不同的牙科植入物品牌进行分类和阐明准确性。为了进行客观标记,我们使用了来自日本香川县立中央医院在 2005 年至 2019 年间接受牙科植入物治疗的患者的数字化全景射线照片中的 8859 个植入物图像,这些图像来自 11 个植入系统。我们评估了五个深度 CNN 模型(具体来说,具有三个卷积层的基本 CNN、VGG16 和 VGG19 迁移学习模型以及经过微调的 VGG16 和 VGG19)在植入物分类方面的性能。在这五个模型中,经过微调的 VGG16 模型表现出最高的植入物分类性能。其次是正常的 VGG16 迁移学习模型,然后是经过微调的 VGG19。我们证实,经过微调的 VGG16 和 VGG19 CNN 可以从 11 种全景 X 射线图像中准确地分类牙科植入物系统。