Suppr超能文献

胃肠道内镜成像分类方法的综合分析。

A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging.

机构信息

SimulaMet, Oslo, Norway; UiT The Arctic University of Norway, Tromsø, Norway.

Department of Engineering Science, University of Oxford, Oxford, UK; Oxford NIHR Biomedical Research Centre, Oxford, UK.

出版信息

Med Image Anal. 2021 May;70:102007. doi: 10.1016/j.media.2021.102007. Epub 2021 Feb 19.

Abstract

Gastrointestinal (GI) endoscopy has been an active field of research motivated by the large number of highly lethal GI cancers. Early GI cancer precursors are often missed during the endoscopic surveillance. The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. Lack of attentiveness due to tiring procedures, and requirement of training are few contributing factors. An automatic GI disease classification system can help reduce such risks by flagging suspicious frames and lesions. GI endoscopy consists of several multi-organ surveillance, therefore, there is need to develop methods that can generalize to various endoscopic findings. In this realm, we present a comprehensive analysis of the Medico GI challenges: Medical Multimedia Task at MediaEval 2017, Medico Multimedia Task at MediaEval 2018, and BioMedia ACM MM Grand Challenge 2019. These challenges are initiative to set-up a benchmark for different computer vision methods applied to the multi-class endoscopic images and promote to build new approaches that could reliably be used in clinics. We report the performance of 21 participating teams over a period of three consecutive years and provide a detailed analysis of the methods used by the participants, highlighting the challenges and shortcomings of the current approaches and dissect their credibility for the use in clinical settings. Our analysis revealed that the participants achieved an improvement on maximum Mathew correlation coefficient (MCC) from 82.68% in 2017 to 93.98% in 2018 and 95.20% in 2019 challenges, and a significant increase in computational speed over consecutive years.

摘要

胃肠道(GI)内镜检查一直是一个活跃的研究领域,这是由于大量高度致命的 GI 癌症。早期 GI 癌前病变在内镜监测中经常被忽视。因此,这种异常在镜下的高漏诊率是一个关键的瓶颈。由于程序疲劳而缺乏注意力,以及需要培训是少数几个促成因素。自动 GI 疾病分类系统可以通过标记可疑帧和病变来帮助降低这种风险。GI 内窥镜检查包括几个多器官监测,因此,需要开发可以推广到各种内窥镜发现的方法。在这一领域,我们对 Medico GI 挑战进行了全面分析:2017 年 MediaEval 的 Medico 多媒体任务、2018 年 MediaEval 的 Medico 多媒体任务和 2019 年 BioMedia ACM MM 大挑战。这些挑战旨在为应用于多类内窥镜图像的不同计算机视觉方法建立基准,并促进构建可在临床中可靠使用的新方法。我们报告了 21 个参赛团队在连续三年中的表现,并对参与者使用的方法进行了详细分析,突出了当前方法的挑战和缺点,并剖析了它们在临床环境中的可信度。我们的分析表明,参与者在 2017 年至 2018 年和 2019 年的挑战中,最大马修相关系数(MCC)的提高从 82.68%提高到 93.98%,并且在连续几年中计算速度显著提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验