Suppr超能文献

15G01,一种来自海鲜加工厂的持续性分离株,其生物膜形成受多个不同功能群基因失活的影响。

Biofilm Formation by 15G01, a Persistent Isolate from a Seafood-Processing Plant, Is Influenced by Inactivation of Multiple Genes Belonging to Different Functional Groups.

机构信息

The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.

Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand.

出版信息

Appl Environ Microbiol. 2021 Apr 27;87(10). doi: 10.1128/AEM.02349-20.

Abstract

is a ubiquitous foodborne pathogen that results in a high rate of mortality in sensitive and immunocompromised people. Contamination of food with is thought to occur during food processing, most often as a result of the pathogen producing a biofilm that persists in the environment and acting as the source for subsequent dispersal of cells onto food. A survey of seafood-processing plants in New Zealand identified the persistent strain 15G01, which has a high capacity to form biofilms. In this study, a transposon library of 15G01 was screened for mutants with altered biofilm formation, assessed by a crystal violet assay, to identify genes involved in biofilm formation. This screen identified 36 transposants that showed a significant change in biofilm formation compared to the wild type. The insertion sites were in 27 genes, 20 of which led to decreased biofilm formation and seven to an increase. Two insertions were in intergenic regions. Annotation of the genes suggested that they are involved in diverse cellular processes, including stress response, autolysis, transporter systems, and cell wall/membrane synthesis. Analysis of the biofilms produced by the transposants using scanning electron microscopy and fluorescence microscopy showed notable differences in the structure of the biofilms compared to the wild type. In particular, inactivation of and produced coccoid-shaped cells and elongated cells in long chains, respectively, and the mutant produced a unique biofilm with a sandwich structure which was reversed to the wild-type level upon magnesium addition. The transposant was successfully complemented with the wild-type gene, whereas the phenotypes were not or only partially restored for the remaining mutants. The major source of contamination of food with is thought to be due to biofilm formation and/or persistence in food-processing plants. By establishing as a biofilm, cells become harder to eradicate due to their increased resistance to environmental threats. Understanding the genes involved in biofilm formation and their influence on biofilm structure will help identify new ways to eliminate harmful biofilms in food processing environments. To date, multiple genes have been identified as being involved in biofilm formation by ; however, the exact mechanism remains unclear. This study identified four genes associated with biofilm formation by a persistent strain. Extensive microscopic analysis illustrated the effect of the disruption of , , , and and the influence of magnesium on the biofilm structure. The results strongly suggest an involvement in biofilm formation for the four genes and provide a basis for further studies to analyze gene regulation to assess the specific role of these biofilm-associated genes.

摘要

是一种普遍存在的食源性病原体,在敏感和免疫功能低下的人群中导致高死亡率。人们认为,食品受到污染是在食品加工过程中发生的,最常见的原因是病原体产生了生物膜,这种生物膜在环境中持续存在,并成为随后细胞散布到食物上的来源。对新西兰海产品加工厂的一项调查发现了具有高生物膜形成能力的持久性菌株 15G01。在这项研究中,对 15G01 的转座子文库进行了筛选,以寻找通过结晶紫测定法评估的生物膜形成发生改变的突变体,从而鉴定参与生物膜形成的基因。该筛选确定了 36 个转座子,与野生型相比,它们的生物膜形成发生了显著变化。插入位点位于 27 个基因中,其中 20 个导致生物膜形成减少,7 个导致生物膜形成增加。两个插入位于基因间区域。基因注释表明,它们参与了多种细胞过程,包括应激反应、自溶、转运系统和细胞壁/膜合成。使用扫描电子显微镜和荧光显微镜分析转座子产生的生物膜表明,与野生型相比,生物膜的结构有明显差异。特别是,和的失活分别导致球菌形状的细胞和长链中的长形细胞,而突变体产生具有独特三明治结构的生物膜,在添加镁后恢复到野生型水平。成功地用野生型基因对 转座子进行了互补,而其余突变体的表型则没有或仅部分恢复。人们认为,食品受到污染的主要原因是生物膜的形成和/或在食品加工工厂中的持续存在。由于其对环境威胁的抵抗力增强,成为生物膜后,细胞更难被根除。了解生物膜形成涉及的基因及其对生物膜结构的影响将有助于确定消除食品加工环境中有害生物膜的新方法。迄今为止,已经确定了多个与生物膜形成有关的基因;然而,确切的机制仍不清楚。本研究确定了与持久性菌株生物膜形成有关的四个基因。广泛的显微镜分析说明了破坏、、和以及镁对生物膜结构的影响。结果强烈表明这四个基因参与了生物膜的形成,并为进一步研究分析基因调控以评估这些生物膜相关基因的具体作用提供了基础。

相似文献

3
Genes involved in Listeria monocytogenes biofilm formation at a simulated food processing plant temperature of 15 °C.
Int J Food Microbiol. 2016 Apr 16;223:63-74. doi: 10.1016/j.ijfoodmicro.2016.02.009. Epub 2016 Feb 11.
4
Identification of Listeria monocytogenes determinants required for biofilm formation.
PLoS One. 2014 Dec 17;9(12):e113696. doi: 10.1371/journal.pone.0113696. eCollection 2014.
5
Biofilm formation of the L. monocytogenes strain 15G01 is influenced by changes in environmental conditions.
J Microbiol Methods. 2015 Dec;119:189-95. doi: 10.1016/j.mimet.2015.10.022. Epub 2015 Oct 31.
6
Identification of genes involved in Listeria monocytogenes biofilm formation by mariner-based transposon mutagenesis.
Appl Microbiol Biotechnol. 2012 Mar;93(5):2051-62. doi: 10.1007/s00253-011-3719-z. Epub 2011 Nov 27.
7
Novel Cadmium Resistance Determinant in Listeria monocytogenes.
Appl Environ Microbiol. 2017 Feb 15;83(5). doi: 10.1128/AEM.02580-16. Print 2017 Mar 1.
8
Differential effects of magnesium, calcium, and sodium on biofilm formation.
Biofouling. 2022 Sep;38(8):786-795. doi: 10.1080/08927014.2022.2131398. Epub 2022 Oct 9.
9
Role of the VirSR-VirAB system in biofilm formation of Listeria monocytogenes EGD-e.
Food Res Int. 2021 Jul;145:110394. doi: 10.1016/j.foodres.2021.110394. Epub 2021 May 8.
10
A putative ABC transporter is involved in negative regulation of biofilm formation by Listeria monocytogenes.
Appl Environ Microbiol. 2008 Dec;74(24):7675-83. doi: 10.1128/AEM.01229-08. Epub 2008 Oct 3.

引用本文的文献

1
Catabolite control protein C contributes to virulence and hydrogen peroxide-induced oxidative stress responses in .
Front Microbiol. 2024 May 31;15:1403694. doi: 10.3389/fmicb.2024.1403694. eCollection 2024.
2
Persistence of microbiological hazards in food and feed production and processing environments.
EFSA J. 2024 Jan 19;22(1):e8521. doi: 10.2903/j.efsa.2024.8521. eCollection 2024 Jan.

本文引用的文献

2
Persistent Listeria monocytogenes strains isolated from mussel production facilities form more biofilm but are not linked to specific genetic markers.
Int J Food Microbiol. 2017 Sep 1;256:45-53. doi: 10.1016/j.ijfoodmicro.2017.05.024. Epub 2017 Jun 1.
3
Genes involved in Listeria monocytogenes biofilm formation at a simulated food processing plant temperature of 15 °C.
Int J Food Microbiol. 2016 Apr 16;223:63-74. doi: 10.1016/j.ijfoodmicro.2016.02.009. Epub 2016 Feb 11.
5
Biofilm formation of the L. monocytogenes strain 15G01 is influenced by changes in environmental conditions.
J Microbiol Methods. 2015 Dec;119:189-95. doi: 10.1016/j.mimet.2015.10.022. Epub 2015 Oct 31.
6
Disturbance of the bacterial cell wall specifically interferes with biofilm formation.
Environ Microbiol Rep. 2015 Dec;7(6):990-1004. doi: 10.1111/1758-2229.12346.
7
Magnesium ions mitigate biofilm formation of Bacillus species via downregulation of matrix genes expression.
Front Microbiol. 2015 Sep 8;6:907. doi: 10.3389/fmicb.2015.00907. eCollection 2015.
9
Biofilm-Forming Abilities of Listeria monocytogenes Serotypes Isolated from Different Sources.
PLoS One. 2015 Sep 11;10(9):e0137046. doi: 10.1371/journal.pone.0137046. eCollection 2015.
10
A Cardiolipin-Deficient Mutant of Rhodobacter sphaeroides Has an Altered Cell Shape and Is Impaired in Biofilm Formation.
J Bacteriol. 2015 Nov;197(21):3446-55. doi: 10.1128/JB.00420-15. Epub 2015 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验