Suppr超能文献

自动管腔检测和磁控对齐控制,用于优化磁辅助胶囊结肠内窥镜系统。

Automatic lumen detection and magnetic alignment control for magnetic-assisted capsule colonoscope system optimization.

机构信息

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.

Division of Gastroenterology, Department of Internal Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, No. 111, Section 3, Xing Long Road, Taipei, 116, Taiwan.

出版信息

Sci Rep. 2021 Mar 19;11(1):6460. doi: 10.1038/s41598-021-86101-9.

Abstract

We developed a magnetic-assisted capsule colonoscope system with integration of computer vision-based object detection and an alignment control scheme. Two convolutional neural network models A and B for lumen identification were trained on an endoscopic dataset of 9080 images. In the lumen alignment experiment, models C and D used a simulated dataset of 8414 images. The models were evaluated using validation indexes for recall (R), precision (P), mean average precision (mAP), and F1 score. Predictive performance was evaluated with the area under the P-R curve. Adjustments of pitch and yaw angles and alignment control time were analyzed in the alignment experiment. Model D had the best predictive performance. Its R, P, mAP, and F1 score were 0.964, 0.961, 0.961, and 0.963, respectively, when the area of overlap/area of union was at 0.3. In the lumen alignment experiment, the mean degrees of adjustment for yaw and pitch in 160 trials were 21.70° and 13.78°, respectively. Mean alignment control time was 0.902 s. Finally, we compared the cecal intubation time between semi-automated and manual navigation in 20 trials. The average cecal intubation time of manual navigation and semi-automated navigation were 9 min 28.41 s and 7 min 23.61 s, respectively. The automatic lumen detection model, which was trained using a deep learning algorithm, demonstrated high performance in each validation index.

摘要

我们开发了一种具有基于计算机视觉的目标检测和对准控制方案的磁辅助胶囊结肠内窥镜系统。两个用于管腔识别的卷积神经网络模型 A 和 B 是在一个 9080 张图像的内窥镜数据集上进行训练的。在管腔对准实验中,模型 C 和 D 使用了一个 8414 张图像的模拟数据集。使用验证指标(召回率 R、精度 P、平均准确率 mAP 和 F1 得分)评估了模型。使用 P-R 曲线下的面积评估预测性能。在对准实验中分析了俯仰角和偏航角的调整以及对准控制时间。模型 D 的预测性能最好。当重叠面积/并集面积为 0.3 时,其 R、P、mAP 和 F1 得分分别为 0.964、0.961、0.961 和 0.963。在管腔对准实验中,160 次试验中 yaw 和 pitch 的平均调整角度分别为 21.70°和 13.78°。平均对准控制时间为 0.902s。最后,我们比较了 20 次试验中半自动导航和手动导航的盲肠插管时间。手动导航和半自动导航的平均盲肠插管时间分别为 9 分 28.41 秒和 7 分 23.61 秒。使用深度学习算法训练的自动管腔检测模型在每个验证指标中都表现出了很高的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4005/7979719/94820abc0fe3/41598_2021_86101_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验