Suppr超能文献

移动部署放射学深度学习在心脏节律设备检测中用户错误的可能性分析。

Analysis of Potential for User Errors in Mobile Deployment of Radiology Deep Learning for Cardiac Rhythm Device Detection.

机构信息

Department of Medical Imaging, University of Arizona College of Medicine, Tucson, AZ, USA.

School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.

出版信息

J Digit Imaging. 2021 Jun;34(3):572-580. doi: 10.1007/s10278-021-00443-4. Epub 2021 Mar 19.

Abstract

We examine how convolutional neural networks (CNNs) for cardiac rhythm device detection can exhibit failures in performance under suboptimal deployment scenarios and examine how medically adversarial image presentation can further impair neural network performance. We validated the publicly available Pacemaker-ID web server and mobile app on 43 local hospital emergency department (ED) cases of patients presenting with a cardiac rhythm device on anterior-posterior (AP) chest radiograph and assessed performance using Cohen's kappa coefficient for inter-rater reliability. To illustrate adversarial performance concerns, we then produced example CNN models using the 65,379 patient MIMIC-CXR chest radiograph retrospective database and evaluated performance with area under the receiver operating characteristic (AUROC). In retrospective review of 43 patients with cardiac rhythm devices on AP chest radiographs during our study period (January 1, 2020 to March 1, 2020), 74.4% (32/43) had device manufacturer information readily available within the electronic medical record. A total of 25.6% of patients (11/43) did not have this information documented in the patient chart and could ostensibly benefit from CNN-based identification of device manufacturer. For patients with known device manufacturer, the Pacemaker-ID prediction was accurate in 87.5% of cases (28/32). Mobile app accuracy varied from 62.5 to 93.75% depending on image capture settings and presentation. Cohen's kappa coefficient varied from 0.448 to 0.897 depending on mobile image capture conditions. For our additional analysis of medically adversarial performance failures with a DenseNet121 trained on MIMIC-CXR images, we showed that an AUROC of 0.9807 ± 0.0051 could be achieved on an example testing dataset while masking a 30% false positive rate in identification of cardiac rhythm devices versus clinically distinct entities such as vagal nerve stimulators. Despite the promise of CNN approaches for cardiac rhythm device analysis on chest radiographs, further study is warranted to assess potential for errors driven by user misuse when deploying these models to mobile devices as well as for cases when performance can be impaired by the presence of other support apparatuses.

摘要

我们研究了卷积神经网络 (CNN) 在心脏节律设备检测中的性能在非理想部署场景下如何出现故障,并研究了医学对抗性图像呈现如何进一步损害神经网络的性能。我们在 43 例当地医院急诊科 (ED) 出现心脏节律设备的患者的前后位 (AP) 胸部 X 光片上验证了可公开获得的起搏器识别器 (Pacemaker-ID) 网络服务器和移动应用程序,并使用 Cohen 的 Kappa 系数评估了观察者间可靠性的性能。为了说明对抗性能的问题,我们随后使用 MIMIC-CXR 胸部 X 光回顾性数据库中的 65379 例患者的示例 CNN 模型进行了评估,并使用接收者操作特征曲线下的面积 (AUROC) 进行了评估。在我们研究期间 (2020 年 1 月 1 日至 2020 年 3 月 1 日) 回顾了 43 例 AP 胸部 X 光片上有心律设备的患者,其中 74.4% (32/43) 的患者的电子病历中可以方便地获取设备制造商信息。共有 25.6%的患者 (11/43) 未在患者图表中记录此信息,显然可以从基于 CNN 的设备制造商识别中受益。对于已知设备制造商的患者,Pacemaker-ID 预测在 87.5%的情况下是准确的 (28/32)。移动应用程序的准确性取决于图像捕获设置和呈现,范围从 62.5%到 93.75%。根据移动图像捕获条件,Cohen 的 Kappa 系数范围从 0.448 到 0.897。对于我们使用基于 MIMIC-CXR 图像训练的 DenseNet121 进行的医学对抗性性能故障的额外分析,我们表明,在示例测试数据集上可以实现 0.9807±0.0051 的 AUROC,同时在识别心脏节律设备与临床上不同的实体(如迷走神经刺激器)时,将假阳性率掩蔽在 30%。尽管 CNN 方法在胸部 X 光片上进行心脏节律设备分析具有广阔的前景,但仍需要进一步研究,以评估将这些模型部署到移动设备时因用户误用而导致的潜在错误的可能性,以及在存在其他支持设备时性能可能受损的情况。

相似文献

3
Cardiac Rhythm Device Identification Using Neural Networks.使用神经网络进行心脏节律设备识别。
JACC Clin Electrophysiol. 2019 May;5(5):576-586. doi: 10.1016/j.jacep.2019.02.003. Epub 2019 Mar 27.

本文引用的文献

1
Text Data Augmentation for Deep Learning.用于深度学习的文本数据增强
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
3
Current applications of big data and machine learning in cardiology.大数据与机器学习在心脏病学中的当前应用。
J Geriatr Cardiol. 2019 Aug;16(8):601-607. doi: 10.11909/j.issn.1671-5411.2019.08.002.
5
Cardiac Rhythm Device Identification Using Neural Networks.使用神经网络进行心脏节律设备识别。
JACC Clin Electrophysiol. 2019 May;5(5):576-586. doi: 10.1016/j.jacep.2019.02.003. Epub 2019 Mar 27.
6
The RSNA Pediatric Bone Age Machine Learning Challenge.RSNA 儿科骨龄机器学习挑战赛。
Radiology. 2019 Feb;290(2):498-503. doi: 10.1148/radiol.2018180736. Epub 2018 Nov 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验