Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
GE Healthcare, Beijing, China.
Abdom Radiol (NY). 2021 Aug;46(8):3815-3825. doi: 10.1007/s00261-021-03021-y. Epub 2021 Mar 20.
To establish a radiomics nomogram based on relaxation maps for predicting the extramural venous invasion (EMVI) of rectal cancer (RC) and compare the diagnostic efficacy of the nomogram and subjective assessment by radiologists.
Among 94 RC patients receiving direct surgical resection, 65 were randomly allocated to the training cohort and 29 to the validation cohort. Radiomics features were extracted from synthetic magnetic resonance imaging including T1, T2, and proton density (PD) maps. The least absolute shrinkage and selection operator methods were used for dimension reduction, feature selection, and radiomics model building. Multivariable logistic regression analysis was used for nomogram development. The performance of the nomogram was assessed with respect to its calibration, receiver operating characteristics (ROC) curve, and decision curve analysis.
The radiomics model demonstrated good predictive efficacy for EMVI, with an area under the ROC curve (AUC), sensitivity, and specificity of 0.912 (95% confidence interval (CI), 0.837-0.986), 0.824, and 0.875 in the training cohort and 0.877 (95% CI 0.751-1.000), 0.833, and 0.826 in the validation cohort. The nomogram had good diagnostic performance, with AUCs of 0.925 (95% CI 0.862-0.988) and 0.899 (95% CI 0.782-1.000) in the training and validation cohort. Furthermore, the radiomics signature showed better diagnostic efficiency than the subjective assessment by both readers (AUC =0.912 vs. 0.732 and 0.763, P = 0.023 and 0.028, respectively).
A radiomics nomogram was developed to preoperatively predict EMVI in RC patients. The application of the radiomics model based on relaxation maps could improve the diagnostic efficacy of EMVI.
基于弛豫图建立直肠癌(RC)外膜静脉侵犯(EMVI)的放射组学列线图,并比较列线图和放射科医生主观评估的诊断效能。
在 94 例接受直接手术切除的 RC 患者中,随机将 65 例患者分配到训练队列,29 例患者分配到验证队列。从合成磁共振成像(包括 T1、T2 和质子密度 [PD] 图)中提取放射组学特征。采用最小绝对收缩和选择算子方法进行降维和特征选择,并建立放射组学模型。多变量逻辑回归分析用于列线图的开发。通过校准、接收者操作特征(ROC)曲线和决策曲线分析评估列线图的性能。
放射组学模型对 EMVI 具有良好的预测效能,在训练队列中的 ROC 曲线下面积(AUC)、敏感性和特异性分别为 0.912(95%置信区间(CI):0.837-0.986)、0.824 和 0.875,在验证队列中的 AUC、敏感性和特异性分别为 0.877(95%CI:0.751-1.000)、0.833 和 0.826。列线图具有良好的诊断性能,在训练和验证队列中的 AUC 分别为 0.925(95%CI:0.862-0.988)和 0.899(95%CI:0.782-1.000)。此外,放射组学特征比两位放射科医生的主观评估具有更好的诊断效能(AUC=0.912 与 0.732 和 0.763,P=0.023 和 0.028)。
本研究建立了一种基于弛豫图的预测 RC 患者 EMVI 的放射组学列线图,基于弛豫图的放射组学模型的应用可以提高 EMVI 的诊断效能。