Suppr超能文献

基于多参数磁共振成像的影像组学用于直肠癌壁外静脉侵犯的术前预测

Multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion in rectal cancer.

作者信息

Shu Zhenyu, Mao Dewang, Song Qiaowei, Xu Yuyun, Pang Peipei, Zhang Yang

机构信息

Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.

Department of Pharmaceuticals Diagnosis, GE Healthcare, Hangzhou, China.

出版信息

Eur Radiol. 2022 Feb;32(2):1002-1013. doi: 10.1007/s00330-021-08242-9. Epub 2021 Sep 4.

Abstract

OBJECTIVES

To compare multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion (EMVI) in rectal cancer using different machine learning algorithms and to develop and validate the best diagnostic model.

METHODS

We retrospectively analyzed 317 patients with rectal cancer. Of these, 114 were EMVI positive and 203 were EMVI negative. Radiomics features were extracted from T-weighted imaging, T-weighted imaging, diffusion-weighted imaging, and enhanced T-weighted imaging of rectal cancer, followed by the dimension reduction of the features. Logistic regression, support vector machine, Bayes, K-nearest neighbor, and random forests algorithms were trained to obtain the radiomics signatures. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of each radiomics signature. The best radiomics signature was selected and combined with clinical and radiological characteristics to construct a joint model for predicting EMVI. Finally, the predictive performance of the joint model was assessed.

RESULTS

The Bayes-based radiomics signature performed well in both the training set and the test set, with the AUCs of 0.744 and 0.738, sensitivities of 0.754 and 0.728, and specificities of 0.887 and 0.918, respectively. The joint model performed best in both the training set and the test set, with the AUCs of 0.839 and 0.835, sensitivities of 0.633 and 0.714, and specificities of 0.901 and 0.885, respectively.

CONCLUSIONS

The joint model demonstrated the best diagnostic performance for the preoperative prediction of EMVI in patients with rectal cancer. Hence, it can be used as a key tool for clinical individualized EMVI prediction.

KEY POINTS

• Radiomics features from magnetic resonance imaging can be used to predict extramural venous invasion (EMVI) in rectal cancer. • Machine learning can improve the accuracy of predicting EMVI in rectal cancer. • Radiomics can serve as a noninvasive biomarker to monitor the status of EMVI.

摘要

目的

比较使用不同机器学习算法的基于多参数磁共振成像的影像组学对直肠癌壁外静脉侵犯(EMVI)进行术前预测,并开发和验证最佳诊断模型。

方法

我们回顾性分析了317例直肠癌患者。其中,114例EMVI阳性,203例EMVI阴性。从直肠癌的T加权成像、T加权成像、扩散加权成像和增强T加权成像中提取影像组学特征,随后进行特征降维。训练逻辑回归、支持向量机、贝叶斯、K近邻和随机森林算法以获得影像组学特征。采用受试者操作特征曲线(AUC)下面积评估各影像组学特征的性能。选择最佳影像组学特征并结合临床和放射学特征构建预测EMVI的联合模型。最后,评估联合模型的预测性能。

结果

基于贝叶斯的影像组学特征在训练集和测试集中均表现良好,AUC分别为0.744和0.738,敏感性分别为0.754和0.728,特异性分别为0.887和0.918。联合模型在训练集和测试集中表现最佳,AUC分别为0.839和0.835,敏感性分别为0.633和0.714,特异性分别为0.901和0.885。

结论

联合模型在直肠癌患者EMVI术前预测中表现出最佳诊断性能。因此,它可作为临床个体化EMVI预测的关键工具。

要点

• 磁共振成像的影像组学特征可用于预测直肠癌壁外静脉侵犯(EMVI)。• 机器学习可提高直肠癌EMVI预测的准确性。• 影像组学可作为监测EMVI状态的非侵入性生物标志物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验