Department of Cell Biology, University of Miami Miller School of Medicine, 1600 NW 10(th) Avenue, Miami, Fl, 33136, USA.
Redox Biol. 2021 May;41:101931. doi: 10.1016/j.redox.2021.101931. Epub 2021 Mar 5.
Redox status is a central determinant of cellular activities and redox imbalance is correlated with numerous diseases. NADPH oxidase activity results in formation of HO, that, in turn, sets cellular redox status, a key regulator of cellular homeostasis and responses to external stimuli. Hydrogen peroxide metabolism regulates cell redox status by driving changes in protein cysteine oxidation often via cycling of thioredoxin/peroxiredoxin and glutathione; however, regulation of enzymes controlling synthesis and utilization of HO is not understood beyond broad outlines. The data presented here show that calcium-stimulated epithelial Duox HO synthesis is transient, independent of intracellular calcium renormalization, HO scavenging by antioxidant enzymes, or substrate depletion. The data support existence of a separate mechanism that restricts epithelial HO synthesis to a burst and prevents harmful changes in redox tone following continuous stimulation. Elucidation of this HO synthesis tempering mechanism is key to understanding cellular redox regulation and control of downstream effectors, and this observation provides a starting point for investigation of the mechanism that controls HO-mediated increases in redox tone.
氧化还原状态是细胞活动的核心决定因素,氧化还原失衡与许多疾病有关。NADPH 氧化酶活性导致 HO 的形成,而 HO 又会改变细胞的氧化还原状态,这是细胞内稳态和对外界刺激反应的关键调节剂。过氧化氢代谢通过驱动蛋白质半胱氨酸氧化的变化来调节细胞的氧化还原状态,通常通过硫氧还蛋白/过氧化物酶和谷胱甘肽的循环;然而,除了大致轮廓外,控制 HO 合成和利用的酶的调节机制尚不清楚。这里呈现的数据表明,钙刺激上皮细胞 Duox HO 的合成是短暂的,与细胞内钙的正常化、抗氧化酶对 HO 的清除或底物耗竭无关。这些数据支持存在一种单独的机制,将上皮细胞 HO 的合成限制在爆发中,并防止在持续刺激后氧化还原调谐的有害变化。阐明这种 HO 合成调节机制是理解细胞氧化还原调节和下游效应物控制的关键,这一观察结果为研究控制 HO 介导的氧化还原调谐增加的机制提供了一个起点。